Loading…
Single-step genomic evaluation using multitrait random regression model and test-day data
The objectives of this study were to evaluate the feasibility of use of the test-day (TD) single-step genomic BLUP (ssGBLUP) using phenotypic records of Nordic Red Dairy cows. The critical point in ssGBLUP is how genomically derived relationships (G) are integrated with population-based pedigree rel...
Saved in:
Published in: | Journal of dairy science 2015-04, Vol.98 (4), p.2775-2784 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The objectives of this study were to evaluate the feasibility of use of the test-day (TD) single-step genomic BLUP (ssGBLUP) using phenotypic records of Nordic Red Dairy cows. The critical point in ssGBLUP is how genomically derived relationships (G) are integrated with population-based pedigree relationships (A) into a combined relationship matrix (H). Therefore, we also tested how different weights for genomic and pedigree relationships affect ssGBLUP, validation reliability, and validation regression coefficients. Deregressed proofs for 305-d milk, protein, and fat yields were used for a posteriori validation. The results showed that the use of phenotypic TD records in ssGBLUP is feasible. Moreover, the TD ssGBLUP model gave considerably higher validation reliabilities and validation regression coefficients than the TD model without genomic information. No significant differences were found in validation reliability between the different TD ssGBLUP models according to bootstrap confidence intervals. However, the degree of inflation in genomic enhanced breeding values is affected by the method used in construction of the H matrix. The results showed that ssGBLUP provides a good alternative to the currently used multi-step approach but there is a great need to find the best option to combine pedigree and genomic information in the genomic matrix. |
---|---|
ISSN: | 0022-0302 1525-3198 |
DOI: | 10.3168/jds.2014-8975 |