Loading…

Morphological transition of a conductive molecular organization with non-covalent from nanonetwork to nanofiber

[Display omitted] The formation of nanofiber morphology at a mesoscopic scale, and molecular level stacking of a tetrathiafulvalene (TTF) derivative with a chiral group were investigated by the one-dimensional growth method in interfacial molecular films. Monomolecular films of a TTF derivative with...

Full description

Saved in:
Bibliographic Details
Published in:Journal of colloid and interface science 2015-06, Vol.448, p.180-188
Main Authors: Fujimori, Atsuhiro, Yamato, Rie, Kikkawa, Takahiro, Tatewaki, Yoko
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:[Display omitted] The formation of nanofiber morphology at a mesoscopic scale, and molecular level stacking of a tetrathiafulvalene (TTF) derivative with a chiral group were investigated by the one-dimensional growth method in interfacial molecular films. Monomolecular films of a TTF derivative with a chiral borneol group display a two-dimensional phase transition at the air/water interface. At high surface pressures, nanonetwork domains are formed, where the TTF molecular planes are densely packed with an interlayer distance of 4.1Å. The formation of this network is attributed to the organized aggregation of the TTF derivatives, which is a result of strong intermolecular interactions. Subsequently, the growth of morphology is encouraged by the application of the one-dimensional growth method at low surface pressure conditions, varying compression speeds, and subphase temperatures. At low surface pressure and a subphase temperature of 15°C, the TTF derivatives aggregated as nanofibers with close packing of molecules. Upon raising the subphase temperature, the thickness of the nanofibers was found to increase and hence, spontaneous morphogenesis at the air/water interface was achieved.
ISSN:0021-9797
1095-7103
DOI:10.1016/j.jcis.2015.02.024