Loading…

Engineering of Recombinant Spider Silk Proteins Allows Defined Uptake and Release of Substances

Drug delivery carriers stabilize drugs and control their release, expanding the therapeutic window, and avoiding side effects of otherwise freely diffusing drugs in the human body. Materials used as carrier vehicles have to be biocompatible, biodegradable, nontoxic, and nonimmunogenic. Previously, p...

Full description

Saved in:
Bibliographic Details
Published in:Journal of pharmaceutical sciences 2015-03, Vol.104 (3), p.988-994
Main Authors: Doblhofer, Elena, Scheibel, Thomas
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Drug delivery carriers stabilize drugs and control their release, expanding the therapeutic window, and avoiding side effects of otherwise freely diffusing drugs in the human body. Materials used as carrier vehicles have to be biocompatible, biodegradable, nontoxic, and nonimmunogenic. Previously, particles made of the recombinant spider silk protein eADF4(C16) could be effectively loaded with positively and neutrally charged model substances. Here, a new positively charged variant thereof, named eADF4(κ16), has been engineered. Its particle formation is indistinguishable to that of polyanionic eADF4(C16), but in contrast polycationic eADF4(κ16) allows incorporation of negatively charged substances. Both high-molecular-weight substances, such as nucleic acids, and low-molecular-weight substances could be efficiently loaded onto eADF4(κ16) particles, and release of nucleic acids was shown to be well controlled. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association.
ISSN:0022-3549
1520-6017
DOI:10.1002/jps.24300