Loading…
Numerical study of multi-conjugate large area wavefront correction for deep tissue microscopy
Wavefront distortion fundamentally limits the achievable imaging depth and quality in thick tissue. Wavefront correction can help restore the diffraction limited focus albeit with a small field of view (FOV), which limits its imaging applications. In this work, we numerically investigate whether the...
Saved in:
Published in: | Optics express 2015-03, Vol.23 (6), p.7463-7470 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Wavefront distortion fundamentally limits the achievable imaging depth and quality in thick tissue. Wavefront correction can help restore the diffraction limited focus albeit with a small field of view (FOV), which limits its imaging applications. In this work, we numerically investigate whether the multi-conjugate configuration, originally developed for astronomical adaptive optics, may increase the correction FOV in random turbid media. The results show that the multi-conjugate configuration can significantly improve the correction area compared to the widely adopted pupil plane correction. Even in the simple case of single-conjugation, it still outperforms the pupil plane correction. This study provides a guideline for designing the optimal wavefront correction system in deep tissue imaging. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.23.007463 |