Loading…

Enhanced neuronal cell differentiation combining biomimetic peptides and a carbon nanotube-polymer scaffold

Abstract Carbon nanotubes are attractive candidates for the development of scaffolds able to support neuronal growth and differentiation thanks to their ability to conduct electrical stimuli, to interface with cells and to mimic the neural environment. We developed a biocompatible composite scaffold...

Full description

Saved in:
Bibliographic Details
Published in:Nanomedicine 2015-04, Vol.11 (3), p.621-632
Main Authors: Scapin, Giorgia, MD, Salice, Patrizio, PhD, Tescari, Simone, MD, Menna, Enzo, PhD, De Filippis, Vincenzo, PhD, Filippini, Francesco, PhD
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c411t-d145a2b02df2b8a4ccc3c7cca87f7d597b9ad40331a1bd72edde22c8819629033
cites cdi_FETCH-LOGICAL-c411t-d145a2b02df2b8a4ccc3c7cca87f7d597b9ad40331a1bd72edde22c8819629033
container_end_page 632
container_issue 3
container_start_page 621
container_title Nanomedicine
container_volume 11
creator Scapin, Giorgia, MD
Salice, Patrizio, PhD
Tescari, Simone, MD
Menna, Enzo, PhD
De Filippis, Vincenzo, PhD
Filippini, Francesco, PhD
description Abstract Carbon nanotubes are attractive candidates for the development of scaffolds able to support neuronal growth and differentiation thanks to their ability to conduct electrical stimuli, to interface with cells and to mimic the neural environment. We developed a biocompatible composite scaffold, consisting of multi-walled carbon nanotubes dispersed in a poly- l -lactic acid matrix able to support growth and differentiation of human neuronal cells. Moreover, to mimic guidance cues from the neural environment, we also designed synthetic peptides, derived from L1 and LINGO1 proteins. Such peptides could positively modulate neuronal differentiation, which is synergistically improved by the combination of the nanocomposite scaffold and the peptides, thus suggesting a prototype for the development of implants for long-term neuronal growth and differentiation. From the Clinical Editor The study describes the design and preparation of nanocomposite scaffolds with multi-walled carbon nanotubes in a poly-L-lactic acid matrix. This compound used in combination with peptides leads to synergistic effects in supporting neuronal cell growth and differentiation.
doi_str_mv 10.1016/j.nano.2014.11.001
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669837160</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S1549963414005632</els_id><sourcerecordid>1669837160</sourcerecordid><originalsourceid>FETCH-LOGICAL-c411t-d145a2b02df2b8a4ccc3c7cca87f7d597b9ad40331a1bd72edde22c8819629033</originalsourceid><addsrcrecordid>eNp9kU9rFTEUxYMoba39Ai4kSzcz5mYy_0AEKW0VCi7Udcjc3NG8ziRjMiO8b2-GV7tw4SohnHPI-R3GXoMoQUDz7lB640MpBagSoBQCnrELqFVf9I2Sz5_ulTpnL1M6CFG1QvRn7FzWtWo61V6whxv_03gkyz1tMXgzcaRp4taNI0XyqzOrC55jmAfnnf_BBxdmN9PqkC-0rM5S4sZbbjiaOGTp_ql1G6hYwnScKfKEZhzDZF-xF6OZEl09npfs--3Nt-tPxf2Xu8_XH-8LVABrYUHVRg5C2lEOnVGIWGGLaLp2bG3dt0NvrBJVBQYG20qylqTEroO-kX1-v2RvT7lLDL82SqueXdpbGU9hSxqapu-qFhqRpfIkxRhSijTqJbrZxKMGoXfI-qD3PnqHrAF0hpxNbx7zt2Em-2T5SzUL3p8ElFv-dhR1Qkc7ZRcJV22D-3_-h3_sOGX2aKYHOlI6hC3mnXIPnaQW-us-874yKCHqppLVH6MepNA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669837160</pqid></control><display><type>article</type><title>Enhanced neuronal cell differentiation combining biomimetic peptides and a carbon nanotube-polymer scaffold</title><source>ScienceDirect Freedom Collection</source><creator>Scapin, Giorgia, MD ; Salice, Patrizio, PhD ; Tescari, Simone, MD ; Menna, Enzo, PhD ; De Filippis, Vincenzo, PhD ; Filippini, Francesco, PhD</creator><creatorcontrib>Scapin, Giorgia, MD ; Salice, Patrizio, PhD ; Tescari, Simone, MD ; Menna, Enzo, PhD ; De Filippis, Vincenzo, PhD ; Filippini, Francesco, PhD</creatorcontrib><description>Abstract Carbon nanotubes are attractive candidates for the development of scaffolds able to support neuronal growth and differentiation thanks to their ability to conduct electrical stimuli, to interface with cells and to mimic the neural environment. We developed a biocompatible composite scaffold, consisting of multi-walled carbon nanotubes dispersed in a poly- l -lactic acid matrix able to support growth and differentiation of human neuronal cells. Moreover, to mimic guidance cues from the neural environment, we also designed synthetic peptides, derived from L1 and LINGO1 proteins. Such peptides could positively modulate neuronal differentiation, which is synergistically improved by the combination of the nanocomposite scaffold and the peptides, thus suggesting a prototype for the development of implants for long-term neuronal growth and differentiation. From the Clinical Editor The study describes the design and preparation of nanocomposite scaffolds with multi-walled carbon nanotubes in a poly-L-lactic acid matrix. This compound used in combination with peptides leads to synergistic effects in supporting neuronal cell growth and differentiation.</description><identifier>ISSN: 1549-9634</identifier><identifier>EISSN: 1549-9642</identifier><identifier>DOI: 10.1016/j.nano.2014.11.001</identifier><identifier>PMID: 25546847</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Biomimetic Materials - chemistry ; Biomimetic Materials - pharmacology ; Biomimetic peptides ; Carbon nanotube scaffold ; Cell Differentiation - drug effects ; Cell Line ; Humans ; Internal Medicine ; Lactic Acid - chemistry ; Lactic Acid - pharmacology ; LINGO1 ; Membrane Proteins - chemistry ; Membrane Proteins - pharmacology ; Nanotubes, Carbon - chemistry ; Nerve Tissue Proteins - chemistry ; Nerve Tissue Proteins - pharmacology ; Neuronal differentiation ; Neurons - cytology ; Neurons - metabolism ; Peptides - chemistry ; Peptides - pharmacology ; Polyesters ; Polymers - chemistry ; Polymers - pharmacology</subject><ispartof>Nanomedicine, 2015-04, Vol.11 (3), p.621-632</ispartof><rights>Elsevier Inc.</rights><rights>2015 Elsevier Inc.</rights><rights>Copyright © 2015 Elsevier Inc. All rights reserved.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c411t-d145a2b02df2b8a4ccc3c7cca87f7d597b9ad40331a1bd72edde22c8819629033</citedby><cites>FETCH-LOGICAL-c411t-d145a2b02df2b8a4ccc3c7cca87f7d597b9ad40331a1bd72edde22c8819629033</cites><orcidid>0000-0002-9448-4776</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25546847$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Scapin, Giorgia, MD</creatorcontrib><creatorcontrib>Salice, Patrizio, PhD</creatorcontrib><creatorcontrib>Tescari, Simone, MD</creatorcontrib><creatorcontrib>Menna, Enzo, PhD</creatorcontrib><creatorcontrib>De Filippis, Vincenzo, PhD</creatorcontrib><creatorcontrib>Filippini, Francesco, PhD</creatorcontrib><title>Enhanced neuronal cell differentiation combining biomimetic peptides and a carbon nanotube-polymer scaffold</title><title>Nanomedicine</title><addtitle>Nanomedicine</addtitle><description>Abstract Carbon nanotubes are attractive candidates for the development of scaffolds able to support neuronal growth and differentiation thanks to their ability to conduct electrical stimuli, to interface with cells and to mimic the neural environment. We developed a biocompatible composite scaffold, consisting of multi-walled carbon nanotubes dispersed in a poly- l -lactic acid matrix able to support growth and differentiation of human neuronal cells. Moreover, to mimic guidance cues from the neural environment, we also designed synthetic peptides, derived from L1 and LINGO1 proteins. Such peptides could positively modulate neuronal differentiation, which is synergistically improved by the combination of the nanocomposite scaffold and the peptides, thus suggesting a prototype for the development of implants for long-term neuronal growth and differentiation. From the Clinical Editor The study describes the design and preparation of nanocomposite scaffolds with multi-walled carbon nanotubes in a poly-L-lactic acid matrix. This compound used in combination with peptides leads to synergistic effects in supporting neuronal cell growth and differentiation.</description><subject>Biomimetic Materials - chemistry</subject><subject>Biomimetic Materials - pharmacology</subject><subject>Biomimetic peptides</subject><subject>Carbon nanotube scaffold</subject><subject>Cell Differentiation - drug effects</subject><subject>Cell Line</subject><subject>Humans</subject><subject>Internal Medicine</subject><subject>Lactic Acid - chemistry</subject><subject>Lactic Acid - pharmacology</subject><subject>LINGO1</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - pharmacology</subject><subject>Nanotubes, Carbon - chemistry</subject><subject>Nerve Tissue Proteins - chemistry</subject><subject>Nerve Tissue Proteins - pharmacology</subject><subject>Neuronal differentiation</subject><subject>Neurons - cytology</subject><subject>Neurons - metabolism</subject><subject>Peptides - chemistry</subject><subject>Peptides - pharmacology</subject><subject>Polyesters</subject><subject>Polymers - chemistry</subject><subject>Polymers - pharmacology</subject><issn>1549-9634</issn><issn>1549-9642</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kU9rFTEUxYMoba39Ai4kSzcz5mYy_0AEKW0VCi7Udcjc3NG8ziRjMiO8b2-GV7tw4SohnHPI-R3GXoMoQUDz7lB640MpBagSoBQCnrELqFVf9I2Sz5_ulTpnL1M6CFG1QvRn7FzWtWo61V6whxv_03gkyz1tMXgzcaRp4taNI0XyqzOrC55jmAfnnf_BBxdmN9PqkC-0rM5S4sZbbjiaOGTp_ql1G6hYwnScKfKEZhzDZF-xF6OZEl09npfs--3Nt-tPxf2Xu8_XH-8LVABrYUHVRg5C2lEOnVGIWGGLaLp2bG3dt0NvrBJVBQYG20qylqTEroO-kX1-v2RvT7lLDL82SqueXdpbGU9hSxqapu-qFhqRpfIkxRhSijTqJbrZxKMGoXfI-qD3PnqHrAF0hpxNbx7zt2Em-2T5SzUL3p8ElFv-dhR1Qkc7ZRcJV22D-3_-h3_sOGX2aKYHOlI6hC3mnXIPnaQW-us-874yKCHqppLVH6MepNA</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Scapin, Giorgia, MD</creator><creator>Salice, Patrizio, PhD</creator><creator>Tescari, Simone, MD</creator><creator>Menna, Enzo, PhD</creator><creator>De Filippis, Vincenzo, PhD</creator><creator>Filippini, Francesco, PhD</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><orcidid>https://orcid.org/0000-0002-9448-4776</orcidid></search><sort><creationdate>20150401</creationdate><title>Enhanced neuronal cell differentiation combining biomimetic peptides and a carbon nanotube-polymer scaffold</title><author>Scapin, Giorgia, MD ; Salice, Patrizio, PhD ; Tescari, Simone, MD ; Menna, Enzo, PhD ; De Filippis, Vincenzo, PhD ; Filippini, Francesco, PhD</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c411t-d145a2b02df2b8a4ccc3c7cca87f7d597b9ad40331a1bd72edde22c8819629033</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Biomimetic Materials - chemistry</topic><topic>Biomimetic Materials - pharmacology</topic><topic>Biomimetic peptides</topic><topic>Carbon nanotube scaffold</topic><topic>Cell Differentiation - drug effects</topic><topic>Cell Line</topic><topic>Humans</topic><topic>Internal Medicine</topic><topic>Lactic Acid - chemistry</topic><topic>Lactic Acid - pharmacology</topic><topic>LINGO1</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - pharmacology</topic><topic>Nanotubes, Carbon - chemistry</topic><topic>Nerve Tissue Proteins - chemistry</topic><topic>Nerve Tissue Proteins - pharmacology</topic><topic>Neuronal differentiation</topic><topic>Neurons - cytology</topic><topic>Neurons - metabolism</topic><topic>Peptides - chemistry</topic><topic>Peptides - pharmacology</topic><topic>Polyesters</topic><topic>Polymers - chemistry</topic><topic>Polymers - pharmacology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scapin, Giorgia, MD</creatorcontrib><creatorcontrib>Salice, Patrizio, PhD</creatorcontrib><creatorcontrib>Tescari, Simone, MD</creatorcontrib><creatorcontrib>Menna, Enzo, PhD</creatorcontrib><creatorcontrib>De Filippis, Vincenzo, PhD</creatorcontrib><creatorcontrib>Filippini, Francesco, PhD</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Nanomedicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scapin, Giorgia, MD</au><au>Salice, Patrizio, PhD</au><au>Tescari, Simone, MD</au><au>Menna, Enzo, PhD</au><au>De Filippis, Vincenzo, PhD</au><au>Filippini, Francesco, PhD</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhanced neuronal cell differentiation combining biomimetic peptides and a carbon nanotube-polymer scaffold</atitle><jtitle>Nanomedicine</jtitle><addtitle>Nanomedicine</addtitle><date>2015-04-01</date><risdate>2015</risdate><volume>11</volume><issue>3</issue><spage>621</spage><epage>632</epage><pages>621-632</pages><issn>1549-9634</issn><eissn>1549-9642</eissn><abstract>Abstract Carbon nanotubes are attractive candidates for the development of scaffolds able to support neuronal growth and differentiation thanks to their ability to conduct electrical stimuli, to interface with cells and to mimic the neural environment. We developed a biocompatible composite scaffold, consisting of multi-walled carbon nanotubes dispersed in a poly- l -lactic acid matrix able to support growth and differentiation of human neuronal cells. Moreover, to mimic guidance cues from the neural environment, we also designed synthetic peptides, derived from L1 and LINGO1 proteins. Such peptides could positively modulate neuronal differentiation, which is synergistically improved by the combination of the nanocomposite scaffold and the peptides, thus suggesting a prototype for the development of implants for long-term neuronal growth and differentiation. From the Clinical Editor The study describes the design and preparation of nanocomposite scaffolds with multi-walled carbon nanotubes in a poly-L-lactic acid matrix. This compound used in combination with peptides leads to synergistic effects in supporting neuronal cell growth and differentiation.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>25546847</pmid><doi>10.1016/j.nano.2014.11.001</doi><tpages>12</tpages><orcidid>https://orcid.org/0000-0002-9448-4776</orcidid></addata></record>
fulltext fulltext
identifier ISSN: 1549-9634
ispartof Nanomedicine, 2015-04, Vol.11 (3), p.621-632
issn 1549-9634
1549-9642
language eng
recordid cdi_proquest_miscellaneous_1669837160
source ScienceDirect Freedom Collection
subjects Biomimetic Materials - chemistry
Biomimetic Materials - pharmacology
Biomimetic peptides
Carbon nanotube scaffold
Cell Differentiation - drug effects
Cell Line
Humans
Internal Medicine
Lactic Acid - chemistry
Lactic Acid - pharmacology
LINGO1
Membrane Proteins - chemistry
Membrane Proteins - pharmacology
Nanotubes, Carbon - chemistry
Nerve Tissue Proteins - chemistry
Nerve Tissue Proteins - pharmacology
Neuronal differentiation
Neurons - cytology
Neurons - metabolism
Peptides - chemistry
Peptides - pharmacology
Polyesters
Polymers - chemistry
Polymers - pharmacology
title Enhanced neuronal cell differentiation combining biomimetic peptides and a carbon nanotube-polymer scaffold
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T12%3A57%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhanced%20neuronal%20cell%20differentiation%20combining%20biomimetic%20peptides%20and%20a%20carbon%20nanotube-polymer%20scaffold&rft.jtitle=Nanomedicine&rft.au=Scapin,%20Giorgia,%20MD&rft.date=2015-04-01&rft.volume=11&rft.issue=3&rft.spage=621&rft.epage=632&rft.pages=621-632&rft.issn=1549-9634&rft.eissn=1549-9642&rft_id=info:doi/10.1016/j.nano.2014.11.001&rft_dat=%3Cproquest_cross%3E1669837160%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c411t-d145a2b02df2b8a4ccc3c7cca87f7d597b9ad40331a1bd72edde22c8819629033%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1669837160&rft_id=info:pmid/25546847&rfr_iscdi=true