Loading…
Planar optical correlators integrated with binary optical lens
Planar optical correlators (POCs) can achieve smaller volume of optical system and hence have important applications to identify dynamic targets in complex scenarios. POCs, however, generally have serious astigmatism and optical efficiency loss introduced by its refractive lens with a zigzag optical...
Saved in:
Published in: | Optics express 2015-03, Vol.23 (5), p.6773-6779 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Planar optical correlators (POCs) can achieve smaller volume of optical system and hence have important applications to identify dynamic targets in complex scenarios. POCs, however, generally have serious astigmatism and optical efficiency loss introduced by its refractive lens with a zigzag optical beam. To conquer the disadvantages of POCs, we propose a type of binary optical planar-integrated optical correlator. The correlator incorporates two pieces of reflective binary optical lens as Fourier transform lens and one spatial light modulator as a programmable filter. The off-axis aberrations commonly occurred in POCs can be corrected by using reflective binary optical lens instead of refractive lens. As a model of hybrid numerical-optical correlator using optoelectronic interface, the proposal is helpful to improve the integration and flexibility and robustness of POCs. |
---|---|
ISSN: | 1094-4087 1094-4087 |
DOI: | 10.1364/OE.23.006773 |