Loading…
Double plasmonic nanodisks design for electromagnetically induced transparency and slow light
An analog of plasmonic system for electromagnetically induced transparency (EIT), in which a small nanodisk with a big side-coupled-nanodisk is directly coupled to the metal-insulator -metal (MIM) waveguide, has been proposed and investigated theoretically and numerically. When the resonant frequenc...
Saved in:
Published in: | Optics express 2015-03, Vol.23 (5), p.6554-6561 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | An analog of plasmonic system for electromagnetically induced transparency (EIT), in which a small nanodisk with a big side-coupled-nanodisk is directly coupled to the metal-insulator -metal (MIM) waveguide, has been proposed and investigated theoretically and numerically. When the resonant frequencies of the two nanodisks differ not too much, a powerful EIT-like effect can be obtained, and the transparency window can be easily tuned by adjusting the radii of the two nanodisks. The plasmonic device can be used as a high-performance EIT-like filter with transmission over 80% and full width at half-maximum (FWHM) less than 30nm, besides, the novel structure shows a high group index over 355. The system paves a new way toward highly integrated optical circuits and networks, especially for wavelength-selective, ultrafast switching, light storage and nonlinear devices. |
---|---|
ISSN: | 1094-4087 |
DOI: | 10.1364/OE.23.006554 |