Loading…

Epigenetics. Restricted epigenetic inheritance of H3K9 methylation

Posttranslational histone modifications are believed to allow the epigenetic transmission of distinct chromatin states, independently of associated DNA sequences. Histone H3 lysine 9 (H3K9) methylation is essential for heterochromatin formation; however, a demonstration of its epigenetic heritabilit...

Full description

Saved in:
Bibliographic Details
Published in:Science (American Association for the Advancement of Science) 2015-04, Vol.348 (6230), p.132-135
Main Authors: Audergon, Pauline N C B, Catania, Sandra, Kagansky, Alexander, Tong, Pin, Shukla, Manu, Pidoux, Alison L, Allshire, Robin C
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites
container_end_page 135
container_issue 6230
container_start_page 132
container_title Science (American Association for the Advancement of Science)
container_volume 348
creator Audergon, Pauline N C B
Catania, Sandra
Kagansky, Alexander
Tong, Pin
Shukla, Manu
Pidoux, Alison L
Allshire, Robin C
description Posttranslational histone modifications are believed to allow the epigenetic transmission of distinct chromatin states, independently of associated DNA sequences. Histone H3 lysine 9 (H3K9) methylation is essential for heterochromatin formation; however, a demonstration of its epigenetic heritability is lacking. Fission yeast has a single H3K9 methyltransferase, Clr4, that directs all H3K9 methylation and heterochromatin. Using releasable tethered Clr4 reveals that an active process rapidly erases H3K9 methylation from tethering sites in wild-type cells. However, inactivation of the putative histone demethylase Epe1 allows H3K9 methylation and silent chromatin maintenance at the tethering site through many mitotic divisions, and transgenerationally through meiosis, after release of tethered Clr4. Thus, H3K9 methylation is a heritable epigenetic mark whose transmission is usually countered by its active removal, which prevents the unauthorized inheritance of heterochromatin.
doi_str_mv 10.1126/science.1260638
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669840762</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669840762</sourcerecordid><originalsourceid>FETCH-LOGICAL-p566-efee5e3f0246f5f0531e8b886fa2141a7cc9d55420f56e381de411ae7f9537af3</originalsourceid><addsrcrecordid>eNo9j81LAzEQxYMgtlbP3iRHL7vNxyabHLW0VloQpPclzU5sZL_cZA_97w1YZQ7z3vD48QahB0pySplcBuuhs5AnTSRXV2hOiRaZZoTP0G0IX4Qkr_kNmjGheBo5Ry_rwX9CB9HbkOMPCHH0NkKN4f-OfXeC0UeT4Lh3eMt3GrcQT-fGRN93d-jamSbA_WUv0GGzPqy22f799W31vM8GIWUGDkAAd4QV0glHBKegjkpJZxgtqCmt1bUQBSNOSOCK1lBQaqB0WvDSOL5AT7_YYey_p1S0an2w0DSmg34KFZVSq4KUkqXo4yU6HVuoq2H0rRnP1d_b_Aem0liA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669840762</pqid></control><display><type>article</type><title>Epigenetics. Restricted epigenetic inheritance of H3K9 methylation</title><source>American Association for the Advancement of Science</source><source>JSTOR Archival Journals and Primary Sources Collection</source><source>Alma/SFX Local Collection</source><creator>Audergon, Pauline N C B ; Catania, Sandra ; Kagansky, Alexander ; Tong, Pin ; Shukla, Manu ; Pidoux, Alison L ; Allshire, Robin C</creator><creatorcontrib>Audergon, Pauline N C B ; Catania, Sandra ; Kagansky, Alexander ; Tong, Pin ; Shukla, Manu ; Pidoux, Alison L ; Allshire, Robin C</creatorcontrib><description>Posttranslational histone modifications are believed to allow the epigenetic transmission of distinct chromatin states, independently of associated DNA sequences. Histone H3 lysine 9 (H3K9) methylation is essential for heterochromatin formation; however, a demonstration of its epigenetic heritability is lacking. Fission yeast has a single H3K9 methyltransferase, Clr4, that directs all H3K9 methylation and heterochromatin. Using releasable tethered Clr4 reveals that an active process rapidly erases H3K9 methylation from tethering sites in wild-type cells. However, inactivation of the putative histone demethylase Epe1 allows H3K9 methylation and silent chromatin maintenance at the tethering site through many mitotic divisions, and transgenerationally through meiosis, after release of tethered Clr4. Thus, H3K9 methylation is a heritable epigenetic mark whose transmission is usually countered by its active removal, which prevents the unauthorized inheritance of heterochromatin.</description><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1260638</identifier><identifier>PMID: 25838386</identifier><language>eng</language><publisher>United States</publisher><subject>Cell Cycle Proteins - metabolism ; Epigenesis, Genetic ; Heterochromatin - metabolism ; Histone-Lysine N-Methyltransferase ; Histones - metabolism ; Lysine - metabolism ; Methylation ; Methyltransferases - metabolism ; Mutation ; Nuclear Proteins - genetics ; Protein Processing, Post-Translational - genetics ; Schizosaccharomyces - enzymology ; Schizosaccharomyces - genetics ; Schizosaccharomyces pombe Proteins - genetics ; Schizosaccharomyces pombe Proteins - metabolism</subject><ispartof>Science (American Association for the Advancement of Science), 2015-04, Vol.348 (6230), p.132-135</ispartof><rights>Copyright © 2015, American Association for the Advancement of Science.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25838386$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Audergon, Pauline N C B</creatorcontrib><creatorcontrib>Catania, Sandra</creatorcontrib><creatorcontrib>Kagansky, Alexander</creatorcontrib><creatorcontrib>Tong, Pin</creatorcontrib><creatorcontrib>Shukla, Manu</creatorcontrib><creatorcontrib>Pidoux, Alison L</creatorcontrib><creatorcontrib>Allshire, Robin C</creatorcontrib><title>Epigenetics. Restricted epigenetic inheritance of H3K9 methylation</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Posttranslational histone modifications are believed to allow the epigenetic transmission of distinct chromatin states, independently of associated DNA sequences. Histone H3 lysine 9 (H3K9) methylation is essential for heterochromatin formation; however, a demonstration of its epigenetic heritability is lacking. Fission yeast has a single H3K9 methyltransferase, Clr4, that directs all H3K9 methylation and heterochromatin. Using releasable tethered Clr4 reveals that an active process rapidly erases H3K9 methylation from tethering sites in wild-type cells. However, inactivation of the putative histone demethylase Epe1 allows H3K9 methylation and silent chromatin maintenance at the tethering site through many mitotic divisions, and transgenerationally through meiosis, after release of tethered Clr4. Thus, H3K9 methylation is a heritable epigenetic mark whose transmission is usually countered by its active removal, which prevents the unauthorized inheritance of heterochromatin.</description><subject>Cell Cycle Proteins - metabolism</subject><subject>Epigenesis, Genetic</subject><subject>Heterochromatin - metabolism</subject><subject>Histone-Lysine N-Methyltransferase</subject><subject>Histones - metabolism</subject><subject>Lysine - metabolism</subject><subject>Methylation</subject><subject>Methyltransferases - metabolism</subject><subject>Mutation</subject><subject>Nuclear Proteins - genetics</subject><subject>Protein Processing, Post-Translational - genetics</subject><subject>Schizosaccharomyces - enzymology</subject><subject>Schizosaccharomyces - genetics</subject><subject>Schizosaccharomyces pombe Proteins - genetics</subject><subject>Schizosaccharomyces pombe Proteins - metabolism</subject><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNo9j81LAzEQxYMgtlbP3iRHL7vNxyabHLW0VloQpPclzU5sZL_cZA_97w1YZQ7z3vD48QahB0pySplcBuuhs5AnTSRXV2hOiRaZZoTP0G0IX4Qkr_kNmjGheBo5Ry_rwX9CB9HbkOMPCHH0NkKN4f-OfXeC0UeT4Lh3eMt3GrcQT-fGRN93d-jamSbA_WUv0GGzPqy22f799W31vM8GIWUGDkAAd4QV0glHBKegjkpJZxgtqCmt1bUQBSNOSOCK1lBQaqB0WvDSOL5AT7_YYey_p1S0an2w0DSmg34KFZVSq4KUkqXo4yU6HVuoq2H0rRnP1d_b_Aem0liA</recordid><startdate>20150403</startdate><enddate>20150403</enddate><creator>Audergon, Pauline N C B</creator><creator>Catania, Sandra</creator><creator>Kagansky, Alexander</creator><creator>Tong, Pin</creator><creator>Shukla, Manu</creator><creator>Pidoux, Alison L</creator><creator>Allshire, Robin C</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7X8</scope></search><sort><creationdate>20150403</creationdate><title>Epigenetics. Restricted epigenetic inheritance of H3K9 methylation</title><author>Audergon, Pauline N C B ; Catania, Sandra ; Kagansky, Alexander ; Tong, Pin ; Shukla, Manu ; Pidoux, Alison L ; Allshire, Robin C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p566-efee5e3f0246f5f0531e8b886fa2141a7cc9d55420f56e381de411ae7f9537af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Cell Cycle Proteins - metabolism</topic><topic>Epigenesis, Genetic</topic><topic>Heterochromatin - metabolism</topic><topic>Histone-Lysine N-Methyltransferase</topic><topic>Histones - metabolism</topic><topic>Lysine - metabolism</topic><topic>Methylation</topic><topic>Methyltransferases - metabolism</topic><topic>Mutation</topic><topic>Nuclear Proteins - genetics</topic><topic>Protein Processing, Post-Translational - genetics</topic><topic>Schizosaccharomyces - enzymology</topic><topic>Schizosaccharomyces - genetics</topic><topic>Schizosaccharomyces pombe Proteins - genetics</topic><topic>Schizosaccharomyces pombe Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Audergon, Pauline N C B</creatorcontrib><creatorcontrib>Catania, Sandra</creatorcontrib><creatorcontrib>Kagansky, Alexander</creatorcontrib><creatorcontrib>Tong, Pin</creatorcontrib><creatorcontrib>Shukla, Manu</creatorcontrib><creatorcontrib>Pidoux, Alison L</creatorcontrib><creatorcontrib>Allshire, Robin C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>MEDLINE - Academic</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Audergon, Pauline N C B</au><au>Catania, Sandra</au><au>Kagansky, Alexander</au><au>Tong, Pin</au><au>Shukla, Manu</au><au>Pidoux, Alison L</au><au>Allshire, Robin C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epigenetics. Restricted epigenetic inheritance of H3K9 methylation</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2015-04-03</date><risdate>2015</risdate><volume>348</volume><issue>6230</issue><spage>132</spage><epage>135</epage><pages>132-135</pages><eissn>1095-9203</eissn><abstract>Posttranslational histone modifications are believed to allow the epigenetic transmission of distinct chromatin states, independently of associated DNA sequences. Histone H3 lysine 9 (H3K9) methylation is essential for heterochromatin formation; however, a demonstration of its epigenetic heritability is lacking. Fission yeast has a single H3K9 methyltransferase, Clr4, that directs all H3K9 methylation and heterochromatin. Using releasable tethered Clr4 reveals that an active process rapidly erases H3K9 methylation from tethering sites in wild-type cells. However, inactivation of the putative histone demethylase Epe1 allows H3K9 methylation and silent chromatin maintenance at the tethering site through many mitotic divisions, and transgenerationally through meiosis, after release of tethered Clr4. Thus, H3K9 methylation is a heritable epigenetic mark whose transmission is usually countered by its active removal, which prevents the unauthorized inheritance of heterochromatin.</abstract><cop>United States</cop><pmid>25838386</pmid><doi>10.1126/science.1260638</doi><tpages>4</tpages></addata></record>
fulltext fulltext
identifier EISSN: 1095-9203
ispartof Science (American Association for the Advancement of Science), 2015-04, Vol.348 (6230), p.132-135
issn 1095-9203
language eng
recordid cdi_proquest_miscellaneous_1669840762
source American Association for the Advancement of Science; JSTOR Archival Journals and Primary Sources Collection; Alma/SFX Local Collection
subjects Cell Cycle Proteins - metabolism
Epigenesis, Genetic
Heterochromatin - metabolism
Histone-Lysine N-Methyltransferase
Histones - metabolism
Lysine - metabolism
Methylation
Methyltransferases - metabolism
Mutation
Nuclear Proteins - genetics
Protein Processing, Post-Translational - genetics
Schizosaccharomyces - enzymology
Schizosaccharomyces - genetics
Schizosaccharomyces pombe Proteins - genetics
Schizosaccharomyces pombe Proteins - metabolism
title Epigenetics. Restricted epigenetic inheritance of H3K9 methylation
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T06%3A59%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epigenetics.%20Restricted%20epigenetic%20inheritance%20of%20H3K9%20methylation&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Audergon,%20Pauline%20N%20C%20B&rft.date=2015-04-03&rft.volume=348&rft.issue=6230&rft.spage=132&rft.epage=135&rft.pages=132-135&rft.eissn=1095-9203&rft_id=info:doi/10.1126/science.1260638&rft_dat=%3Cproquest_pubme%3E1669840762%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-p566-efee5e3f0246f5f0531e8b886fa2141a7cc9d55420f56e381de411ae7f9537af3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1669840762&rft_id=info:pmid/25838386&rfr_iscdi=true