Loading…
The role of the dissipative and random forces in the calculation of the pressure of simple fluids with dissipative particle dynamics
The role of viscous forces coupled with Brownian forces in momentum-conserving computer simulations is studied here in the context of their contribution to the total average pressure of a simple fluid as derived from the virial theorem, in comparison with the contribution of the conservative force t...
Saved in:
Published in: | Computer physics communications 2015-03, Vol.188, p.76-81 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The role of viscous forces coupled with Brownian forces in momentum-conserving computer simulations is studied here in the context of their contribution to the total average pressure of a simple fluid as derived from the virial theorem, in comparison with the contribution of the conservative force to the total pressure. The specific mesoscopic model used is the one known as dissipative particle dynamics, although our conclusions apply to similar models that obey the fluctuation–dissipation theorem for short range interactions and have velocity-dependent viscous forces. We find that the average contribution of the random and dissipative forces to the pressure is negligible for long simulations, provided these forces are appropriately coupled and when the finite time step used in the integration of the equation of motion is not too small. Finally, we study the properties of the fluid when the random force is made equal to zero and find that the system freezes as a result of the competition of the dissipative and conservative forces. |
---|---|
ISSN: | 0010-4655 1879-2944 |
DOI: | 10.1016/j.cpc.2014.11.006 |