Loading…

Effects of praseodymium doping on thermoelectric transport properties of CaMnO3 compound system

The rare earth Pr doped Ca1-xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on thermoelectric transport properties of CaMnO3 compound system. The doped samples exhibited sin-gle phase composition within the experimental doping rang...

Full description

Saved in:
Bibliographic Details
Published in:Journal of rare earths 2013-09, Vol.31 (9), p.885-890
Main Author: 张飞鹏 牛保成 张坤书 张忻 路清梅 张久兴
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The rare earth Pr doped Ca1-xPrxMnO3 (x=0, 0.06, 0.08, 0.1, 0.12, and 0.14) compound bulk samples were prepared to study the effect of Pr doping on thermoelectric transport properties of CaMnO3 compound system. The doped samples exhibited sin-gle phase composition within the experimental doping range, with condensed bulk microstructure and small porosities. The electrical resistivity was remarkably reduced for doped samples, on account of the enhanced carrier concentration;the absolute value of See-beck coefficient was deteriorated mainly due to enhanced electron carrier concentration. The electrical performances of the doped samples reflected by resistivity and Seebeck coefficient fluctuations were optimistically tuned, with an optimized power factor value of 0.342 mW/(m·K2) at 873 K for x=0.08 sample, which was very much higher comparing with that of the un-doped sample. The lattice thermal conduction was really confined, leading to distinctly repressed total thermal conductivity. The thermoelectric per-formance was noticeably improved by Pr doping and the dimensionless figure of merit ZT for the Ca0.92Pr0.08MnO3 compound was favorably optimized with the maximum value 0.16 at 873 K.
ISSN:1002-0721
2509-4963
DOI:10.1016/S1002-0721(12)60374-3