Loading…
Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole
ABSTRACT Persisters are bacteria that are highly tolerant to antibiotics due to their dormant state and are of clinical significance owing to their role in infections. Given that the population of persisters increases in biofilms and that cyclic diguanylate (c‐di‐GMP) is an intracellular signal that...
Saved in:
Published in: | Biotechnology and bioengineering 2015-03, Vol.112 (3), p.588-600 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5606-35073bb2d03a156a1b1619ce231200cfaf7229f2d531b6114ff4369fe2f140c93 |
---|---|
cites | cdi_FETCH-LOGICAL-c5606-35073bb2d03a156a1b1619ce231200cfaf7229f2d531b6114ff4369fe2f140c93 |
container_end_page | 600 |
container_issue | 3 |
container_start_page | 588 |
container_title | Biotechnology and bioengineering |
container_volume | 112 |
creator | Kwan, Brian W. Osbourne, Devon O. Hu, Ying Benedik, Michael J. Wood, Thomas K. |
description | ABSTRACT
Persisters are bacteria that are highly tolerant to antibiotics due to their dormant state and are of clinical significance owing to their role in infections. Given that the population of persisters increases in biofilms and that cyclic diguanylate (c‐di‐GMP) is an intracellular signal that increases biofilm formation, we sought to determine whether c‐di‐GMP has a role in bacterial persistence. By examining the effect of 30 genes from Escherichia coli, including diguanylate cyclases that synthesize c‐di‐GMP and phosphodiesterases that breakdown c‐di‐GMP, we determined that DosP (direct oxygen sensing phosphodiesterase) increases persistence by over a thousand fold. Using both transcriptomic and proteomic approaches, we determined that DosP increases persistence by decreasing tryptophanase activity and thus indole. Corroborating this effect, addition of indole reduced persistence. Despite the role of DosP as a c‐di‐GMP phosphodiesterase, the decrease in tryptophanase activity was found to be a result of cyclic adenosine monophosphate (cAMP) phosphodiesterase activity. Corroborating this result, the reduction of cAMP via CpdA, a cAMP‐specific phosphodiesterase, increased persistence and reduced indole levels similarly to DosP. Therefore, phosphodiesterase DosP increases persistence by reducing the interkingdom signal indole via reduction of the global regulator cAMP. Biotechnol. Bioeng. 2015;112: 588–600. © 2014 Wiley Periodicals, Inc.
A new antibiotic persistence pathway involving the regulatory signals cAMP and indole is identified in Escherichia coli. The authors demonstrate that oxygen‐sensing phosphodiesterase DosP increases persistence a thousand fold. The mechanism for this increase is that DosP cleaves cAMP, thus controlling the cAMP‐CRP transcriptional regulatory network and down‐regulating tnaA, which encodes tryptophanase. Low amounts of tryptophanase lead to reduced levels of the intercellular signal indole, which is shown here to inversely influence persistence (i.e., low indole yields high persistence). |
doi_str_mv | 10.1002/bit.25456 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669850197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652450159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5606-35073bb2d03a156a1b1619ce231200cfaf7229f2d531b6114ff4369fe2f140c93</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi1ERbcLB_4AisQFDmnHduysj_2gH1Jb9lAEQkKW44wbl2yy2BuV_fd4N20PSJV6ssZ-5tGMX0LeU9inAOyg8qt9JgohX5EJBVXmwBS8JhMAkDkXiu2SvRjvUlnOpHxDdplgVBVKTsivedPHZdPXHuMKg4mYnfRxnvnOBkxVzJYYok9vncWsWmcB68H67jazh1fz7L7xthnvErpqMIv-tjNt6q_7Ft-SHWfaiO8ezin5dvrl5vg8v_x6dnF8eJlbIbcjQsmritXADRXS0IpKqiwyThmAdcaVjCnHasFpJSktnCu4VA6ZowVYxafk0-hdhv7PkDbRCx8ttq3psB-iplKqmQCqypegwNWMyZegghXJKjYDfPwPveuHkD5iS4EUW-2UfB4pG_oYAzq9DH5hwlpT0JskdUpSb5NM7IcH41AtsH4iH6NLwMEI3PsW18-b9NHFzaMyHzs2cf596jDht07blkJ_vz7TP9UJVer6h2b8H7_8tFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1650651660</pqid></control><display><type>article</type><title>Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Kwan, Brian W. ; Osbourne, Devon O. ; Hu, Ying ; Benedik, Michael J. ; Wood, Thomas K.</creator><creatorcontrib>Kwan, Brian W. ; Osbourne, Devon O. ; Hu, Ying ; Benedik, Michael J. ; Wood, Thomas K.</creatorcontrib><description>ABSTRACT
Persisters are bacteria that are highly tolerant to antibiotics due to their dormant state and are of clinical significance owing to their role in infections. Given that the population of persisters increases in biofilms and that cyclic diguanylate (c‐di‐GMP) is an intracellular signal that increases biofilm formation, we sought to determine whether c‐di‐GMP has a role in bacterial persistence. By examining the effect of 30 genes from Escherichia coli, including diguanylate cyclases that synthesize c‐di‐GMP and phosphodiesterases that breakdown c‐di‐GMP, we determined that DosP (direct oxygen sensing phosphodiesterase) increases persistence by over a thousand fold. Using both transcriptomic and proteomic approaches, we determined that DosP increases persistence by decreasing tryptophanase activity and thus indole. Corroborating this effect, addition of indole reduced persistence. Despite the role of DosP as a c‐di‐GMP phosphodiesterase, the decrease in tryptophanase activity was found to be a result of cyclic adenosine monophosphate (cAMP) phosphodiesterase activity. Corroborating this result, the reduction of cAMP via CpdA, a cAMP‐specific phosphodiesterase, increased persistence and reduced indole levels similarly to DosP. Therefore, phosphodiesterase DosP increases persistence by reducing the interkingdom signal indole via reduction of the global regulator cAMP. Biotechnol. Bioeng. 2015;112: 588–600. © 2014 Wiley Periodicals, Inc.
A new antibiotic persistence pathway involving the regulatory signals cAMP and indole is identified in Escherichia coli. The authors demonstrate that oxygen‐sensing phosphodiesterase DosP increases persistence a thousand fold. The mechanism for this increase is that DosP cleaves cAMP, thus controlling the cAMP‐CRP transcriptional regulatory network and down‐regulating tnaA, which encodes tryptophanase. Low amounts of tryptophanase lead to reduced levels of the intercellular signal indole, which is shown here to inversely influence persistence (i.e., low indole yields high persistence).</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.25456</identifier><identifier>PMID: 25219496</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Adenosine monophosphate ; Antibiotics ; Bacteria ; Bioengineering ; Biofilms ; Biosynthesis ; c-di-GMP ; Cyclic AMP - metabolism ; Cyclic GMP - analogs & derivatives ; Cyclic GMP - metabolism ; DosP ; Drug resistance ; Drug Resistance, Bacterial - genetics ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli - physiology ; Escherichia coli Proteins - metabolism ; indole ; Indoles ; Indoles - metabolism ; persistence ; Phosphoric Diester Hydrolases - metabolism ; Proteomics ; Reduction ; Signal transduction ; TnaA</subject><ispartof>Biotechnology and bioengineering, 2015-03, Vol.112 (3), p.588-600</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. Mar 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5606-35073bb2d03a156a1b1619ce231200cfaf7229f2d531b6114ff4369fe2f140c93</citedby><cites>FETCH-LOGICAL-c5606-35073bb2d03a156a1b1619ce231200cfaf7229f2d531b6114ff4369fe2f140c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25219496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwan, Brian W.</creatorcontrib><creatorcontrib>Osbourne, Devon O.</creatorcontrib><creatorcontrib>Hu, Ying</creatorcontrib><creatorcontrib>Benedik, Michael J.</creatorcontrib><creatorcontrib>Wood, Thomas K.</creatorcontrib><title>Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>ABSTRACT
Persisters are bacteria that are highly tolerant to antibiotics due to their dormant state and are of clinical significance owing to their role in infections. Given that the population of persisters increases in biofilms and that cyclic diguanylate (c‐di‐GMP) is an intracellular signal that increases biofilm formation, we sought to determine whether c‐di‐GMP has a role in bacterial persistence. By examining the effect of 30 genes from Escherichia coli, including diguanylate cyclases that synthesize c‐di‐GMP and phosphodiesterases that breakdown c‐di‐GMP, we determined that DosP (direct oxygen sensing phosphodiesterase) increases persistence by over a thousand fold. Using both transcriptomic and proteomic approaches, we determined that DosP increases persistence by decreasing tryptophanase activity and thus indole. Corroborating this effect, addition of indole reduced persistence. Despite the role of DosP as a c‐di‐GMP phosphodiesterase, the decrease in tryptophanase activity was found to be a result of cyclic adenosine monophosphate (cAMP) phosphodiesterase activity. Corroborating this result, the reduction of cAMP via CpdA, a cAMP‐specific phosphodiesterase, increased persistence and reduced indole levels similarly to DosP. Therefore, phosphodiesterase DosP increases persistence by reducing the interkingdom signal indole via reduction of the global regulator cAMP. Biotechnol. Bioeng. 2015;112: 588–600. © 2014 Wiley Periodicals, Inc.
A new antibiotic persistence pathway involving the regulatory signals cAMP and indole is identified in Escherichia coli. The authors demonstrate that oxygen‐sensing phosphodiesterase DosP increases persistence a thousand fold. The mechanism for this increase is that DosP cleaves cAMP, thus controlling the cAMP‐CRP transcriptional regulatory network and down‐regulating tnaA, which encodes tryptophanase. Low amounts of tryptophanase lead to reduced levels of the intercellular signal indole, which is shown here to inversely influence persistence (i.e., low indole yields high persistence).</description><subject>Adenosine monophosphate</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bioengineering</subject><subject>Biofilms</subject><subject>Biosynthesis</subject><subject>c-di-GMP</subject><subject>Cyclic AMP - metabolism</subject><subject>Cyclic GMP - analogs & derivatives</subject><subject>Cyclic GMP - metabolism</subject><subject>DosP</subject><subject>Drug resistance</subject><subject>Drug Resistance, Bacterial - genetics</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli - physiology</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>indole</subject><subject>Indoles</subject><subject>Indoles - metabolism</subject><subject>persistence</subject><subject>Phosphoric Diester Hydrolases - metabolism</subject><subject>Proteomics</subject><subject>Reduction</subject><subject>Signal transduction</subject><subject>TnaA</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi1ERbcLB_4AisQFDmnHduysj_2gH1Jb9lAEQkKW44wbl2yy2BuV_fd4N20PSJV6ssZ-5tGMX0LeU9inAOyg8qt9JgohX5EJBVXmwBS8JhMAkDkXiu2SvRjvUlnOpHxDdplgVBVKTsivedPHZdPXHuMKg4mYnfRxnvnOBkxVzJYYok9vncWsWmcB68H67jazh1fz7L7xthnvErpqMIv-tjNt6q_7Ft-SHWfaiO8ezin5dvrl5vg8v_x6dnF8eJlbIbcjQsmritXADRXS0IpKqiwyThmAdcaVjCnHasFpJSktnCu4VA6ZowVYxafk0-hdhv7PkDbRCx8ttq3psB-iplKqmQCqypegwNWMyZegghXJKjYDfPwPveuHkD5iS4EUW-2UfB4pG_oYAzq9DH5hwlpT0JskdUpSb5NM7IcH41AtsH4iH6NLwMEI3PsW18-b9NHFzaMyHzs2cf596jDht07blkJ_vz7TP9UJVer6h2b8H7_8tFU</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Kwan, Brian W.</creator><creator>Osbourne, Devon O.</creator><creator>Hu, Ying</creator><creator>Benedik, Michael J.</creator><creator>Wood, Thomas K.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201503</creationdate><title>Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole</title><author>Kwan, Brian W. ; Osbourne, Devon O. ; Hu, Ying ; Benedik, Michael J. ; Wood, Thomas K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5606-35073bb2d03a156a1b1619ce231200cfaf7229f2d531b6114ff4369fe2f140c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adenosine monophosphate</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bioengineering</topic><topic>Biofilms</topic><topic>Biosynthesis</topic><topic>c-di-GMP</topic><topic>Cyclic AMP - metabolism</topic><topic>Cyclic GMP - analogs & derivatives</topic><topic>Cyclic GMP - metabolism</topic><topic>DosP</topic><topic>Drug resistance</topic><topic>Drug Resistance, Bacterial - genetics</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli - physiology</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>indole</topic><topic>Indoles</topic><topic>Indoles - metabolism</topic><topic>persistence</topic><topic>Phosphoric Diester Hydrolases - metabolism</topic><topic>Proteomics</topic><topic>Reduction</topic><topic>Signal transduction</topic><topic>TnaA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwan, Brian W.</creatorcontrib><creatorcontrib>Osbourne, Devon O.</creatorcontrib><creatorcontrib>Hu, Ying</creatorcontrib><creatorcontrib>Benedik, Michael J.</creatorcontrib><creatorcontrib>Wood, Thomas K.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwan, Brian W.</au><au>Osbourne, Devon O.</au><au>Hu, Ying</au><au>Benedik, Michael J.</au><au>Wood, Thomas K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2015-03</date><risdate>2015</risdate><volume>112</volume><issue>3</issue><spage>588</spage><epage>600</epage><pages>588-600</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>ABSTRACT
Persisters are bacteria that are highly tolerant to antibiotics due to their dormant state and are of clinical significance owing to their role in infections. Given that the population of persisters increases in biofilms and that cyclic diguanylate (c‐di‐GMP) is an intracellular signal that increases biofilm formation, we sought to determine whether c‐di‐GMP has a role in bacterial persistence. By examining the effect of 30 genes from Escherichia coli, including diguanylate cyclases that synthesize c‐di‐GMP and phosphodiesterases that breakdown c‐di‐GMP, we determined that DosP (direct oxygen sensing phosphodiesterase) increases persistence by over a thousand fold. Using both transcriptomic and proteomic approaches, we determined that DosP increases persistence by decreasing tryptophanase activity and thus indole. Corroborating this effect, addition of indole reduced persistence. Despite the role of DosP as a c‐di‐GMP phosphodiesterase, the decrease in tryptophanase activity was found to be a result of cyclic adenosine monophosphate (cAMP) phosphodiesterase activity. Corroborating this result, the reduction of cAMP via CpdA, a cAMP‐specific phosphodiesterase, increased persistence and reduced indole levels similarly to DosP. Therefore, phosphodiesterase DosP increases persistence by reducing the interkingdom signal indole via reduction of the global regulator cAMP. Biotechnol. Bioeng. 2015;112: 588–600. © 2014 Wiley Periodicals, Inc.
A new antibiotic persistence pathway involving the regulatory signals cAMP and indole is identified in Escherichia coli. The authors demonstrate that oxygen‐sensing phosphodiesterase DosP increases persistence a thousand fold. The mechanism for this increase is that DosP cleaves cAMP, thus controlling the cAMP‐CRP transcriptional regulatory network and down‐regulating tnaA, which encodes tryptophanase. Low amounts of tryptophanase lead to reduced levels of the intercellular signal indole, which is shown here to inversely influence persistence (i.e., low indole yields high persistence).</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>25219496</pmid><doi>10.1002/bit.25456</doi><tpages>13</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3592 |
ispartof | Biotechnology and bioengineering, 2015-03, Vol.112 (3), p.588-600 |
issn | 0006-3592 1097-0290 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669850197 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Adenosine monophosphate Antibiotics Bacteria Bioengineering Biofilms Biosynthesis c-di-GMP Cyclic AMP - metabolism Cyclic GMP - analogs & derivatives Cyclic GMP - metabolism DosP Drug resistance Drug Resistance, Bacterial - genetics E coli Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli - physiology Escherichia coli Proteins - metabolism indole Indoles Indoles - metabolism persistence Phosphoric Diester Hydrolases - metabolism Proteomics Reduction Signal transduction TnaA |
title | Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A13%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphodiesterase%20DosP%20increases%20persistence%20by%20reducing%20cAMP%20which%20reduces%20the%20signal%20indole&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Kwan,%20Brian%20W.&rft.date=2015-03&rft.volume=112&rft.issue=3&rft.spage=588&rft.epage=600&rft.pages=588-600&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.25456&rft_dat=%3Cproquest_cross%3E1652450159%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5606-35073bb2d03a156a1b1619ce231200cfaf7229f2d531b6114ff4369fe2f140c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1650651660&rft_id=info:pmid/25219496&rfr_iscdi=true |