Loading…

Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole

ABSTRACT Persisters are bacteria that are highly tolerant to antibiotics due to their dormant state and are of clinical significance owing to their role in infections. Given that the population of persisters increases in biofilms and that cyclic diguanylate (c‐di‐GMP) is an intracellular signal that...

Full description

Saved in:
Bibliographic Details
Published in:Biotechnology and bioengineering 2015-03, Vol.112 (3), p.588-600
Main Authors: Kwan, Brian W., Osbourne, Devon O., Hu, Ying, Benedik, Michael J., Wood, Thomas K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5606-35073bb2d03a156a1b1619ce231200cfaf7229f2d531b6114ff4369fe2f140c93
cites cdi_FETCH-LOGICAL-c5606-35073bb2d03a156a1b1619ce231200cfaf7229f2d531b6114ff4369fe2f140c93
container_end_page 600
container_issue 3
container_start_page 588
container_title Biotechnology and bioengineering
container_volume 112
creator Kwan, Brian W.
Osbourne, Devon O.
Hu, Ying
Benedik, Michael J.
Wood, Thomas K.
description ABSTRACT Persisters are bacteria that are highly tolerant to antibiotics due to their dormant state and are of clinical significance owing to their role in infections. Given that the population of persisters increases in biofilms and that cyclic diguanylate (c‐di‐GMP) is an intracellular signal that increases biofilm formation, we sought to determine whether c‐di‐GMP has a role in bacterial persistence. By examining the effect of 30 genes from Escherichia coli, including diguanylate cyclases that synthesize c‐di‐GMP and phosphodiesterases that breakdown c‐di‐GMP, we determined that DosP (direct oxygen sensing phosphodiesterase) increases persistence by over a thousand fold. Using both transcriptomic and proteomic approaches, we determined that DosP increases persistence by decreasing tryptophanase activity and thus indole. Corroborating this effect, addition of indole reduced persistence. Despite the role of DosP as a c‐di‐GMP phosphodiesterase, the decrease in tryptophanase activity was found to be a result of cyclic adenosine monophosphate (cAMP) phosphodiesterase activity. Corroborating this result, the reduction of cAMP via CpdA, a cAMP‐specific phosphodiesterase, increased persistence and reduced indole levels similarly to DosP. Therefore, phosphodiesterase DosP increases persistence by reducing the interkingdom signal indole via reduction of the global regulator cAMP. Biotechnol. Bioeng. 2015;112: 588–600. © 2014 Wiley Periodicals, Inc. A new antibiotic persistence pathway involving the regulatory signals cAMP and indole is identified in Escherichia coli. The authors demonstrate that oxygen‐sensing phosphodiesterase DosP increases persistence a thousand fold. The mechanism for this increase is that DosP cleaves cAMP, thus controlling the cAMP‐CRP transcriptional regulatory network and down‐regulating tnaA, which encodes tryptophanase. Low amounts of tryptophanase lead to reduced levels of the intercellular signal indole, which is shown here to inversely influence persistence (i.e., low indole yields high persistence).
doi_str_mv 10.1002/bit.25456
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669850197</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652450159</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5606-35073bb2d03a156a1b1619ce231200cfaf7229f2d531b6114ff4369fe2f140c93</originalsourceid><addsrcrecordid>eNqNkU1v1DAQhi1ERbcLB_4AisQFDmnHduysj_2gH1Jb9lAEQkKW44wbl2yy2BuV_fd4N20PSJV6ssZ-5tGMX0LeU9inAOyg8qt9JgohX5EJBVXmwBS8JhMAkDkXiu2SvRjvUlnOpHxDdplgVBVKTsivedPHZdPXHuMKg4mYnfRxnvnOBkxVzJYYok9vncWsWmcB68H67jazh1fz7L7xthnvErpqMIv-tjNt6q_7Ft-SHWfaiO8ezin5dvrl5vg8v_x6dnF8eJlbIbcjQsmritXADRXS0IpKqiwyThmAdcaVjCnHasFpJSktnCu4VA6ZowVYxafk0-hdhv7PkDbRCx8ttq3psB-iplKqmQCqypegwNWMyZegghXJKjYDfPwPveuHkD5iS4EUW-2UfB4pG_oYAzq9DH5hwlpT0JskdUpSb5NM7IcH41AtsH4iH6NLwMEI3PsW18-b9NHFzaMyHzs2cf596jDht07blkJ_vz7TP9UJVer6h2b8H7_8tFU</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1650651660</pqid></control><display><type>article</type><title>Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Kwan, Brian W. ; Osbourne, Devon O. ; Hu, Ying ; Benedik, Michael J. ; Wood, Thomas K.</creator><creatorcontrib>Kwan, Brian W. ; Osbourne, Devon O. ; Hu, Ying ; Benedik, Michael J. ; Wood, Thomas K.</creatorcontrib><description>ABSTRACT Persisters are bacteria that are highly tolerant to antibiotics due to their dormant state and are of clinical significance owing to their role in infections. Given that the population of persisters increases in biofilms and that cyclic diguanylate (c‐di‐GMP) is an intracellular signal that increases biofilm formation, we sought to determine whether c‐di‐GMP has a role in bacterial persistence. By examining the effect of 30 genes from Escherichia coli, including diguanylate cyclases that synthesize c‐di‐GMP and phosphodiesterases that breakdown c‐di‐GMP, we determined that DosP (direct oxygen sensing phosphodiesterase) increases persistence by over a thousand fold. Using both transcriptomic and proteomic approaches, we determined that DosP increases persistence by decreasing tryptophanase activity and thus indole. Corroborating this effect, addition of indole reduced persistence. Despite the role of DosP as a c‐di‐GMP phosphodiesterase, the decrease in tryptophanase activity was found to be a result of cyclic adenosine monophosphate (cAMP) phosphodiesterase activity. Corroborating this result, the reduction of cAMP via CpdA, a cAMP‐specific phosphodiesterase, increased persistence and reduced indole levels similarly to DosP. Therefore, phosphodiesterase DosP increases persistence by reducing the interkingdom signal indole via reduction of the global regulator cAMP. Biotechnol. Bioeng. 2015;112: 588–600. © 2014 Wiley Periodicals, Inc. A new antibiotic persistence pathway involving the regulatory signals cAMP and indole is identified in Escherichia coli. The authors demonstrate that oxygen‐sensing phosphodiesterase DosP increases persistence a thousand fold. The mechanism for this increase is that DosP cleaves cAMP, thus controlling the cAMP‐CRP transcriptional regulatory network and down‐regulating tnaA, which encodes tryptophanase. Low amounts of tryptophanase lead to reduced levels of the intercellular signal indole, which is shown here to inversely influence persistence (i.e., low indole yields high persistence).</description><identifier>ISSN: 0006-3592</identifier><identifier>EISSN: 1097-0290</identifier><identifier>DOI: 10.1002/bit.25456</identifier><identifier>PMID: 25219496</identifier><identifier>CODEN: BIBIAU</identifier><language>eng</language><publisher>United States: Blackwell Publishing Ltd</publisher><subject>Adenosine monophosphate ; Antibiotics ; Bacteria ; Bioengineering ; Biofilms ; Biosynthesis ; c-di-GMP ; Cyclic AMP - metabolism ; Cyclic GMP - analogs &amp; derivatives ; Cyclic GMP - metabolism ; DosP ; Drug resistance ; Drug Resistance, Bacterial - genetics ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli - physiology ; Escherichia coli Proteins - metabolism ; indole ; Indoles ; Indoles - metabolism ; persistence ; Phosphoric Diester Hydrolases - metabolism ; Proteomics ; Reduction ; Signal transduction ; TnaA</subject><ispartof>Biotechnology and bioengineering, 2015-03, Vol.112 (3), p.588-600</ispartof><rights>2014 Wiley Periodicals, Inc.</rights><rights>Copyright Wiley Subscription Services, Inc. Mar 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5606-35073bb2d03a156a1b1619ce231200cfaf7229f2d531b6114ff4369fe2f140c93</citedby><cites>FETCH-LOGICAL-c5606-35073bb2d03a156a1b1619ce231200cfaf7229f2d531b6114ff4369fe2f140c93</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25219496$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kwan, Brian W.</creatorcontrib><creatorcontrib>Osbourne, Devon O.</creatorcontrib><creatorcontrib>Hu, Ying</creatorcontrib><creatorcontrib>Benedik, Michael J.</creatorcontrib><creatorcontrib>Wood, Thomas K.</creatorcontrib><title>Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole</title><title>Biotechnology and bioengineering</title><addtitle>Biotechnol. Bioeng</addtitle><description>ABSTRACT Persisters are bacteria that are highly tolerant to antibiotics due to their dormant state and are of clinical significance owing to their role in infections. Given that the population of persisters increases in biofilms and that cyclic diguanylate (c‐di‐GMP) is an intracellular signal that increases biofilm formation, we sought to determine whether c‐di‐GMP has a role in bacterial persistence. By examining the effect of 30 genes from Escherichia coli, including diguanylate cyclases that synthesize c‐di‐GMP and phosphodiesterases that breakdown c‐di‐GMP, we determined that DosP (direct oxygen sensing phosphodiesterase) increases persistence by over a thousand fold. Using both transcriptomic and proteomic approaches, we determined that DosP increases persistence by decreasing tryptophanase activity and thus indole. Corroborating this effect, addition of indole reduced persistence. Despite the role of DosP as a c‐di‐GMP phosphodiesterase, the decrease in tryptophanase activity was found to be a result of cyclic adenosine monophosphate (cAMP) phosphodiesterase activity. Corroborating this result, the reduction of cAMP via CpdA, a cAMP‐specific phosphodiesterase, increased persistence and reduced indole levels similarly to DosP. Therefore, phosphodiesterase DosP increases persistence by reducing the interkingdom signal indole via reduction of the global regulator cAMP. Biotechnol. Bioeng. 2015;112: 588–600. © 2014 Wiley Periodicals, Inc. A new antibiotic persistence pathway involving the regulatory signals cAMP and indole is identified in Escherichia coli. The authors demonstrate that oxygen‐sensing phosphodiesterase DosP increases persistence a thousand fold. The mechanism for this increase is that DosP cleaves cAMP, thus controlling the cAMP‐CRP transcriptional regulatory network and down‐regulating tnaA, which encodes tryptophanase. Low amounts of tryptophanase lead to reduced levels of the intercellular signal indole, which is shown here to inversely influence persistence (i.e., low indole yields high persistence).</description><subject>Adenosine monophosphate</subject><subject>Antibiotics</subject><subject>Bacteria</subject><subject>Bioengineering</subject><subject>Biofilms</subject><subject>Biosynthesis</subject><subject>c-di-GMP</subject><subject>Cyclic AMP - metabolism</subject><subject>Cyclic GMP - analogs &amp; derivatives</subject><subject>Cyclic GMP - metabolism</subject><subject>DosP</subject><subject>Drug resistance</subject><subject>Drug Resistance, Bacterial - genetics</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli - physiology</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>indole</subject><subject>Indoles</subject><subject>Indoles - metabolism</subject><subject>persistence</subject><subject>Phosphoric Diester Hydrolases - metabolism</subject><subject>Proteomics</subject><subject>Reduction</subject><subject>Signal transduction</subject><subject>TnaA</subject><issn>0006-3592</issn><issn>1097-0290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1v1DAQhi1ERbcLB_4AisQFDmnHduysj_2gH1Jb9lAEQkKW44wbl2yy2BuV_fd4N20PSJV6ssZ-5tGMX0LeU9inAOyg8qt9JgohX5EJBVXmwBS8JhMAkDkXiu2SvRjvUlnOpHxDdplgVBVKTsivedPHZdPXHuMKg4mYnfRxnvnOBkxVzJYYok9vncWsWmcB68H67jazh1fz7L7xthnvErpqMIv-tjNt6q_7Ft-SHWfaiO8ezin5dvrl5vg8v_x6dnF8eJlbIbcjQsmritXADRXS0IpKqiwyThmAdcaVjCnHasFpJSktnCu4VA6ZowVYxafk0-hdhv7PkDbRCx8ttq3psB-iplKqmQCqypegwNWMyZegghXJKjYDfPwPveuHkD5iS4EUW-2UfB4pG_oYAzq9DH5hwlpT0JskdUpSb5NM7IcH41AtsH4iH6NLwMEI3PsW18-b9NHFzaMyHzs2cf596jDht07blkJ_vz7TP9UJVer6h2b8H7_8tFU</recordid><startdate>201503</startdate><enddate>201503</enddate><creator>Kwan, Brian W.</creator><creator>Osbourne, Devon O.</creator><creator>Hu, Ying</creator><creator>Benedik, Michael J.</creator><creator>Wood, Thomas K.</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>JG9</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>201503</creationdate><title>Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole</title><author>Kwan, Brian W. ; Osbourne, Devon O. ; Hu, Ying ; Benedik, Michael J. ; Wood, Thomas K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5606-35073bb2d03a156a1b1619ce231200cfaf7229f2d531b6114ff4369fe2f140c93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Adenosine monophosphate</topic><topic>Antibiotics</topic><topic>Bacteria</topic><topic>Bioengineering</topic><topic>Biofilms</topic><topic>Biosynthesis</topic><topic>c-di-GMP</topic><topic>Cyclic AMP - metabolism</topic><topic>Cyclic GMP - analogs &amp; derivatives</topic><topic>Cyclic GMP - metabolism</topic><topic>DosP</topic><topic>Drug resistance</topic><topic>Drug Resistance, Bacterial - genetics</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli - physiology</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>indole</topic><topic>Indoles</topic><topic>Indoles - metabolism</topic><topic>persistence</topic><topic>Phosphoric Diester Hydrolases - metabolism</topic><topic>Proteomics</topic><topic>Reduction</topic><topic>Signal transduction</topic><topic>TnaA</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kwan, Brian W.</creatorcontrib><creatorcontrib>Osbourne, Devon O.</creatorcontrib><creatorcontrib>Hu, Ying</creatorcontrib><creatorcontrib>Benedik, Michael J.</creatorcontrib><creatorcontrib>Wood, Thomas K.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Biotechnology and bioengineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kwan, Brian W.</au><au>Osbourne, Devon O.</au><au>Hu, Ying</au><au>Benedik, Michael J.</au><au>Wood, Thomas K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole</atitle><jtitle>Biotechnology and bioengineering</jtitle><addtitle>Biotechnol. Bioeng</addtitle><date>2015-03</date><risdate>2015</risdate><volume>112</volume><issue>3</issue><spage>588</spage><epage>600</epage><pages>588-600</pages><issn>0006-3592</issn><eissn>1097-0290</eissn><coden>BIBIAU</coden><abstract>ABSTRACT Persisters are bacteria that are highly tolerant to antibiotics due to their dormant state and are of clinical significance owing to their role in infections. Given that the population of persisters increases in biofilms and that cyclic diguanylate (c‐di‐GMP) is an intracellular signal that increases biofilm formation, we sought to determine whether c‐di‐GMP has a role in bacterial persistence. By examining the effect of 30 genes from Escherichia coli, including diguanylate cyclases that synthesize c‐di‐GMP and phosphodiesterases that breakdown c‐di‐GMP, we determined that DosP (direct oxygen sensing phosphodiesterase) increases persistence by over a thousand fold. Using both transcriptomic and proteomic approaches, we determined that DosP increases persistence by decreasing tryptophanase activity and thus indole. Corroborating this effect, addition of indole reduced persistence. Despite the role of DosP as a c‐di‐GMP phosphodiesterase, the decrease in tryptophanase activity was found to be a result of cyclic adenosine monophosphate (cAMP) phosphodiesterase activity. Corroborating this result, the reduction of cAMP via CpdA, a cAMP‐specific phosphodiesterase, increased persistence and reduced indole levels similarly to DosP. Therefore, phosphodiesterase DosP increases persistence by reducing the interkingdom signal indole via reduction of the global regulator cAMP. Biotechnol. Bioeng. 2015;112: 588–600. © 2014 Wiley Periodicals, Inc. A new antibiotic persistence pathway involving the regulatory signals cAMP and indole is identified in Escherichia coli. The authors demonstrate that oxygen‐sensing phosphodiesterase DosP increases persistence a thousand fold. The mechanism for this increase is that DosP cleaves cAMP, thus controlling the cAMP‐CRP transcriptional regulatory network and down‐regulating tnaA, which encodes tryptophanase. Low amounts of tryptophanase lead to reduced levels of the intercellular signal indole, which is shown here to inversely influence persistence (i.e., low indole yields high persistence).</abstract><cop>United States</cop><pub>Blackwell Publishing Ltd</pub><pmid>25219496</pmid><doi>10.1002/bit.25456</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-3592
ispartof Biotechnology and bioengineering, 2015-03, Vol.112 (3), p.588-600
issn 0006-3592
1097-0290
language eng
recordid cdi_proquest_miscellaneous_1669850197
source Wiley-Blackwell Read & Publish Collection
subjects Adenosine monophosphate
Antibiotics
Bacteria
Bioengineering
Biofilms
Biosynthesis
c-di-GMP
Cyclic AMP - metabolism
Cyclic GMP - analogs & derivatives
Cyclic GMP - metabolism
DosP
Drug resistance
Drug Resistance, Bacterial - genetics
E coli
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli - physiology
Escherichia coli Proteins - metabolism
indole
Indoles
Indoles - metabolism
persistence
Phosphoric Diester Hydrolases - metabolism
Proteomics
Reduction
Signal transduction
TnaA
title Phosphodiesterase DosP increases persistence by reducing cAMP which reduces the signal indole
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T23%3A13%3A41IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Phosphodiesterase%20DosP%20increases%20persistence%20by%20reducing%20cAMP%20which%20reduces%20the%20signal%20indole&rft.jtitle=Biotechnology%20and%20bioengineering&rft.au=Kwan,%20Brian%20W.&rft.date=2015-03&rft.volume=112&rft.issue=3&rft.spage=588&rft.epage=600&rft.pages=588-600&rft.issn=0006-3592&rft.eissn=1097-0290&rft.coden=BIBIAU&rft_id=info:doi/10.1002/bit.25456&rft_dat=%3Cproquest_cross%3E1652450159%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5606-35073bb2d03a156a1b1619ce231200cfaf7229f2d531b6114ff4369fe2f140c93%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1650651660&rft_id=info:pmid/25219496&rfr_iscdi=true