Loading…

Boosting the Efficiency of First-Order Abductive Reasoning Using Pre-estimated Relatedness between Predicates

Abduction is inference to the best explanation. While abduction has long been considered a promising framework for natural language processing (NLP), its computational complexity hinders its application to practical NLP problems. In this paper, we propose a method to predetermine the semantic relate...

Full description

Saved in:
Bibliographic Details
Published in:International journal of machine learning and computing 2015-04, Vol.5 (2), p.114-120
Main Authors: Yamamoto, Kazeto, Inoue, Naoya, Inui, Kentaro, Arase, Yuki, Tsujii, Jun'ichi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2603-96d385cdcd04dccbc983b3dce183a0153760798418d8c17db918c11854c62bf43
cites cdi_FETCH-LOGICAL-c2603-96d385cdcd04dccbc983b3dce183a0153760798418d8c17db918c11854c62bf43
container_end_page 120
container_issue 2
container_start_page 114
container_title International journal of machine learning and computing
container_volume 5
creator Yamamoto, Kazeto
Inoue, Naoya
Inui, Kentaro
Arase, Yuki
Tsujii, Jun'ichi
description Abduction is inference to the best explanation. While abduction has long been considered a promising framework for natural language processing (NLP), its computational complexity hinders its application to practical NLP problems. In this paper, we propose a method to predetermine the semantic relatedness between predicates and to use that information to boost the efficiency of first-order abductive reasoning. The proposed method uses the estimated semantic relatedness as follows: (i) to block inferences leading to explanations that are semantically irrelevant to the observations, and (ii) to cluster semantically relevant observations in order to split the task of abduction into a set of non-interdependent subproblems that can be solved in parallel. Our experiment with a large-scale knowledge base for a real-life NLP task reveals that the proposed method drastically reduces the size of the search space and significantly improves the computational efficiency of first-order abductive reasoning compared with the state-of-the-art system.
doi_str_mv 10.7763/IJMLC.2015.V5.493
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669850887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669850887</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2603-96d385cdcd04dccbc983b3dce183a0153760798418d8c17db918c11854c62bf43</originalsourceid><addsrcrecordid>eNpdkcFPwyAUxonRxGXuD_DWxIuXVigU6HEum87MzBi3K2nhVbt0ZUKr2X8vVQ_GCx8Pfu_lffkQuiQ4EYLTm-XD42qWpJhkyTZLWE5P0ChUOKYC49M_93M08X6HMSaUESnSEdrfWuu7un2NujeI5lVV6xpafYxsFS1q57t47Qy4aFqaXnf1B0TPUHjbDh0bP5xPDmIII_ZFByb8NoO24H1UQvcJ0A6EqXV49hforCoaD5NfHaPNYv4yu49X67vlbLqKdcoxjXNuqMy00QYzo3Wpc0lLajQQSYvgkgqORS6DBSM1EabMSVAiM6Z5WlaMjtH1z9yDs-992E7ta6-haYoWbO8V4TyXGZZSBPTqH7qzvWvDdoFiPGUM5yRQ5IfSznrvoFIHFxy7oyJYDRmo7wzUkIHaZipkQL8ATz15-w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1646244091</pqid></control><display><type>article</type><title>Boosting the Efficiency of First-Order Abductive Reasoning Using Pre-estimated Relatedness between Predicates</title><source>EZB Electronic Journals Library</source><creator>Yamamoto, Kazeto ; Inoue, Naoya ; Inui, Kentaro ; Arase, Yuki ; Tsujii, Jun'ichi</creator><creatorcontrib>Yamamoto, Kazeto ; Inoue, Naoya ; Inui, Kentaro ; Arase, Yuki ; Tsujii, Jun'ichi</creatorcontrib><description>Abduction is inference to the best explanation. While abduction has long been considered a promising framework for natural language processing (NLP), its computational complexity hinders its application to practical NLP problems. In this paper, we propose a method to predetermine the semantic relatedness between predicates and to use that information to boost the efficiency of first-order abductive reasoning. The proposed method uses the estimated semantic relatedness as follows: (i) to block inferences leading to explanations that are semantically irrelevant to the observations, and (ii) to cluster semantically relevant observations in order to split the task of abduction into a set of non-interdependent subproblems that can be solved in parallel. Our experiment with a large-scale knowledge base for a real-life NLP task reveals that the proposed method drastically reduces the size of the search space and significantly improves the computational efficiency of first-order abductive reasoning compared with the state-of-the-art system.</description><identifier>ISSN: 2010-3700</identifier><identifier>EISSN: 2010-3700</identifier><identifier>DOI: 10.7763/IJMLC.2015.V5.493</identifier><language>eng</language><publisher>Singapore: IACSIT Press</publisher><subject>Abduction ; Blocking ; Computation ; Computational efficiency ; Knowledge ; Reasoning ; Semantics ; Tasks</subject><ispartof>International journal of machine learning and computing, 2015-04, Vol.5 (2), p.114-120</ispartof><rights>Copyright IACSIT Press Apr 2015</rights><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2603-96d385cdcd04dccbc983b3dce183a0153760798418d8c17db918c11854c62bf43</citedby><cites>FETCH-LOGICAL-c2603-96d385cdcd04dccbc983b3dce183a0153760798418d8c17db918c11854c62bf43</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Yamamoto, Kazeto</creatorcontrib><creatorcontrib>Inoue, Naoya</creatorcontrib><creatorcontrib>Inui, Kentaro</creatorcontrib><creatorcontrib>Arase, Yuki</creatorcontrib><creatorcontrib>Tsujii, Jun'ichi</creatorcontrib><title>Boosting the Efficiency of First-Order Abductive Reasoning Using Pre-estimated Relatedness between Predicates</title><title>International journal of machine learning and computing</title><description>Abduction is inference to the best explanation. While abduction has long been considered a promising framework for natural language processing (NLP), its computational complexity hinders its application to practical NLP problems. In this paper, we propose a method to predetermine the semantic relatedness between predicates and to use that information to boost the efficiency of first-order abductive reasoning. The proposed method uses the estimated semantic relatedness as follows: (i) to block inferences leading to explanations that are semantically irrelevant to the observations, and (ii) to cluster semantically relevant observations in order to split the task of abduction into a set of non-interdependent subproblems that can be solved in parallel. Our experiment with a large-scale knowledge base for a real-life NLP task reveals that the proposed method drastically reduces the size of the search space and significantly improves the computational efficiency of first-order abductive reasoning compared with the state-of-the-art system.</description><subject>Abduction</subject><subject>Blocking</subject><subject>Computation</subject><subject>Computational efficiency</subject><subject>Knowledge</subject><subject>Reasoning</subject><subject>Semantics</subject><subject>Tasks</subject><issn>2010-3700</issn><issn>2010-3700</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNpdkcFPwyAUxonRxGXuD_DWxIuXVigU6HEum87MzBi3K2nhVbt0ZUKr2X8vVQ_GCx8Pfu_lffkQuiQ4EYLTm-XD42qWpJhkyTZLWE5P0ChUOKYC49M_93M08X6HMSaUESnSEdrfWuu7un2NujeI5lVV6xpafYxsFS1q57t47Qy4aFqaXnf1B0TPUHjbDh0bP5xPDmIII_ZFByb8NoO24H1UQvcJ0A6EqXV49hforCoaD5NfHaPNYv4yu49X67vlbLqKdcoxjXNuqMy00QYzo3Wpc0lLajQQSYvgkgqORS6DBSM1EabMSVAiM6Z5WlaMjtH1z9yDs-992E7ta6-haYoWbO8V4TyXGZZSBPTqH7qzvWvDdoFiPGUM5yRQ5IfSznrvoFIHFxy7oyJYDRmo7wzUkIHaZipkQL8ATz15-w</recordid><startdate>20150401</startdate><enddate>20150401</enddate><creator>Yamamoto, Kazeto</creator><creator>Inoue, Naoya</creator><creator>Inui, Kentaro</creator><creator>Arase, Yuki</creator><creator>Tsujii, Jun'ichi</creator><general>IACSIT Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150401</creationdate><title>Boosting the Efficiency of First-Order Abductive Reasoning Using Pre-estimated Relatedness between Predicates</title><author>Yamamoto, Kazeto ; Inoue, Naoya ; Inui, Kentaro ; Arase, Yuki ; Tsujii, Jun'ichi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2603-96d385cdcd04dccbc983b3dce183a0153760798418d8c17db918c11854c62bf43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Abduction</topic><topic>Blocking</topic><topic>Computation</topic><topic>Computational efficiency</topic><topic>Knowledge</topic><topic>Reasoning</topic><topic>Semantics</topic><topic>Tasks</topic><toplevel>online_resources</toplevel><creatorcontrib>Yamamoto, Kazeto</creatorcontrib><creatorcontrib>Inoue, Naoya</creatorcontrib><creatorcontrib>Inui, Kentaro</creatorcontrib><creatorcontrib>Arase, Yuki</creatorcontrib><creatorcontrib>Tsujii, Jun'ichi</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of machine learning and computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamamoto, Kazeto</au><au>Inoue, Naoya</au><au>Inui, Kentaro</au><au>Arase, Yuki</au><au>Tsujii, Jun'ichi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Boosting the Efficiency of First-Order Abductive Reasoning Using Pre-estimated Relatedness between Predicates</atitle><jtitle>International journal of machine learning and computing</jtitle><date>2015-04-01</date><risdate>2015</risdate><volume>5</volume><issue>2</issue><spage>114</spage><epage>120</epage><pages>114-120</pages><issn>2010-3700</issn><eissn>2010-3700</eissn><abstract>Abduction is inference to the best explanation. While abduction has long been considered a promising framework for natural language processing (NLP), its computational complexity hinders its application to practical NLP problems. In this paper, we propose a method to predetermine the semantic relatedness between predicates and to use that information to boost the efficiency of first-order abductive reasoning. The proposed method uses the estimated semantic relatedness as follows: (i) to block inferences leading to explanations that are semantically irrelevant to the observations, and (ii) to cluster semantically relevant observations in order to split the task of abduction into a set of non-interdependent subproblems that can be solved in parallel. Our experiment with a large-scale knowledge base for a real-life NLP task reveals that the proposed method drastically reduces the size of the search space and significantly improves the computational efficiency of first-order abductive reasoning compared with the state-of-the-art system.</abstract><cop>Singapore</cop><pub>IACSIT Press</pub><doi>10.7763/IJMLC.2015.V5.493</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2010-3700
ispartof International journal of machine learning and computing, 2015-04, Vol.5 (2), p.114-120
issn 2010-3700
2010-3700
language eng
recordid cdi_proquest_miscellaneous_1669850887
source EZB Electronic Journals Library
subjects Abduction
Blocking
Computation
Computational efficiency
Knowledge
Reasoning
Semantics
Tasks
title Boosting the Efficiency of First-Order Abductive Reasoning Using Pre-estimated Relatedness between Predicates
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T23%3A12%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Boosting%20the%20Efficiency%20of%20First-Order%20Abductive%20Reasoning%20Using%20Pre-estimated%20Relatedness%20between%20Predicates&rft.jtitle=International%20journal%20of%20machine%20learning%20and%20computing&rft.au=Yamamoto,%20Kazeto&rft.date=2015-04-01&rft.volume=5&rft.issue=2&rft.spage=114&rft.epage=120&rft.pages=114-120&rft.issn=2010-3700&rft.eissn=2010-3700&rft_id=info:doi/10.7763/IJMLC.2015.V5.493&rft_dat=%3Cproquest_cross%3E1669850887%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2603-96d385cdcd04dccbc983b3dce183a0153760798418d8c17db918c11854c62bf43%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1646244091&rft_id=info:pmid/&rfr_iscdi=true