Loading…
The effect of graphene oxide on conformation change, aggregation and cytotoxicity of HIV-1 regulatory protein (Vpr)
Abstract The fragment of viral protein R (Vpr), Vpr13-33, plays an important role in regulating nuclear importing of HIV through ion channel formation with a leucine-zipper-like α-helical conformation. Herein we report an approach to reduce cytotoxicity of Vpr13-33 by graphene oxide induced conforma...
Saved in:
Published in: | Biomaterials 2013-01, Vol.34 (4), p.1383-1390 |
---|---|
Main Authors: | , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Abstract The fragment of viral protein R (Vpr), Vpr13-33, plays an important role in regulating nuclear importing of HIV through ion channel formation with a leucine-zipper-like α-helical conformation. Herein we report an approach to reduce cytotoxicity of Vpr13-33 by graphene oxide induced conformation change and aggregation. Preferential adsorption of Vpr13-33 on graphene oxide accompanied by conformation change from α-helix to β-sheet structures has been observed by using atomic force microscopy (AFM) and circular dichroism (CD). The submolecular structures of the Vpr13-33 peptide assembly on graphite surface have been identified by using scanning tunneling microscopy (STM), which confirms the β-sheet structures of Vpr13-33 on graphene oxide surface. The reduced cytotoxicity of Vpr13-33 to neuroblastoma cells and T cells are detected by MTT assay, which could be associated with the conformation change and stimulated aggregation of Vpr13-33 upon addition of graphene oxide through hydrophobic interaction. Furthermore, fluorescent leakage assay by using large unilamellar vesicles (LUVs) indicated that the GO reduced Vpr13-33-induced cytotoxicity could be associated with the inhibited “pore forming” function of Vpr13-33 by conformation change and aggregation. |
---|---|
ISSN: | 0142-9612 1878-5905 |
DOI: | 10.1016/j.biomaterials.2012.10.067 |