Loading…

Hyphenation of single-drop microextraction with laser-induced breakdown spectrometry for trace analysis in liquid samples: a viability study

In this work, an analytical methodology based on single drop microextraction (SDME) followed by Laser-Induced Breakdown Spectrometry (LIBS) has been tested for trace metal determination in liquid samples. By this method, analytes in the samples were extracted into a small volume of toluene as ammoni...

Full description

Saved in:
Bibliographic Details
Published in:Analytical methods 2015-01, Vol.7 (3), p.877-883
Main Authors: Aguirre, M. A., Nikolova, H., Hidalgo, M., Canals, A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this work, an analytical methodology based on single drop microextraction (SDME) followed by Laser-Induced Breakdown Spectrometry (LIBS) has been tested for trace metal determination in liquid samples. By this method, analytes in the samples were extracted into a small volume of toluene as ammonium pyrrolidinedithiocarbamate (APDC) chelates. After that, the analyte-enriched toluene was dried on a solid substrate and, finally, the resulting solid residue was analyzed by LIBS. Analyte extraction by the SDME procedure was optimized for the first time by using a multivariate optimization approach. Under optimum SDME conditions, analytical figures of merit of the proposed SDME-LIBS methodology were compared to those of the direct LIBS analysis method ( i.e. , without the SDME procedure). An estuarine water certified reference material was analyzed for method trueness evaluation. The results obtained in this study indicate that SDME-LIBS methodology leads to a sensitivity increase of about 2.0–2.6 times the ones obtained by LIBS. Detection limits of SDME-LIBS decrease according to the obtained sensitivity improvement, reaching values in the range 21–301 μg kg −1 for the analytes tested. The measurement repeatability was similar in both SDME-LIBS (13–20% RSD) and LIBS (16–20% RSD) methodologies, mainly limited by the LIBS experimental setup used in this work for LIBS analysis of liquid samples. The SDME-LIBS analysis of the certified reference material led to recovery values in the range of 96% to 112%.
ISSN:1759-9660
1759-9679
DOI:10.1039/C4AY02218A