Loading…
Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement
Experiments with colloidal nano- and microparticles and computer simulations show that, unexpectedly, confinement and entropy are sufficient for the formation of icosahedral crystalline clusters of up to about 100,000 particles. Icosahedral symmetry, which is not compatible with truly long-range ord...
Saved in:
Published in: | Nature materials 2015-01, Vol.14 (1), p.56-60 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c584t-4d1015d905a1ed7a3a55eca61ef24a00b53e576fb376089c6868e73616fb94ab3 |
---|---|
cites | cdi_FETCH-LOGICAL-c584t-4d1015d905a1ed7a3a55eca61ef24a00b53e576fb376089c6868e73616fb94ab3 |
container_end_page | 60 |
container_issue | 1 |
container_start_page | 56 |
container_title | Nature materials |
container_volume | 14 |
creator | de Nijs, Bart Dussi, Simone Smallenburg, Frank Meeldijk, Johannes D. Groenendijk, Dirk J. Filion, Laura Imhof, Arnout van Blaaderen, Alfons Dijkstra, Marjolein |
description | Experiments with colloidal nano- and microparticles and computer simulations show that, unexpectedly, confinement and entropy are sufficient for the formation of icosahedral crystalline clusters of up to about 100,000 particles.
Icosahedral symmetry, which is not compatible with truly long-range order, can be found in many systems, such as liquids, glasses, atomic clusters, quasicrystals and virus-capsids
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
. To obtain arrangements with a high degree of icosahedral order from tens of particles or more, interparticle attractive interactions are considered to be essential
1
,
3
,
6
,
7
,
8
,
9
,
10
,
11
,
12
. Here, we report that entropy and spherical confinement suffice for the formation of icosahedral clusters consisting of up to 100,000 particles. Specifically, by using real-space measurements on nanometre- and micrometre-sized colloids, as well as computer simulations, we show that tens of thousands of hard spheres compressed under spherical confinement spontaneously crystallize into icosahedral clusters that are entropically favoured over the bulk face-centred cubic crystal structure
13
,
14
. Our findings provide insights into the interplay between confinement and crystallization and into how these are connected to the formation of icosahedral structures. |
doi_str_mv | 10.1038/nmat4072 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669853627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3563877591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-4d1015d905a1ed7a3a55eca61ef24a00b53e576fb376089c6868e73616fb94ab3</originalsourceid><addsrcrecordid>eNqNkU1Lw0AQhhdRrFbBXyABL3qI7mY_c5RSP6DgRQ-ewmYzaVOS3bibCP33prZV6cnTDDMPzzC8CF0QfEswVXe20R3DMjlAJ4RJETMh8OG2JyRJRug0hCXGCeFcHKNRwomkXOET9D61nXftKi589Qk2Kp0fXJWzkSujWvs5RJVxQS-g8LqOjKtrVxXrru5DBz5E-SoK7QJ8Zb73tqwsNGC7M3RU6jrA-baO0dvD9HXyFM9eHp8n97PYcMW6mBUEE16kmGsChdRUcw5GCwJlwjTGOafApShzKgVWqRFKKJBUkGGUMp3TMbreeFvvPnoIXdZUwUBdawuuDxkRIlWcikT-A6UyTblU6YBe7aFL13s7PDJQTBJCleC_QuNdCB7KrPVVo_0qIzhbJ5PtkhnQy62wzxsofsBdFANwswHCsLJz8H8u7su-AJV6lwc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647113865</pqid></control><display><type>article</type><title>Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement</title><source>Nature</source><creator>de Nijs, Bart ; Dussi, Simone ; Smallenburg, Frank ; Meeldijk, Johannes D. ; Groenendijk, Dirk J. ; Filion, Laura ; Imhof, Arnout ; van Blaaderen, Alfons ; Dijkstra, Marjolein</creator><creatorcontrib>de Nijs, Bart ; Dussi, Simone ; Smallenburg, Frank ; Meeldijk, Johannes D. ; Groenendijk, Dirk J. ; Filion, Laura ; Imhof, Arnout ; van Blaaderen, Alfons ; Dijkstra, Marjolein</creatorcontrib><description>Experiments with colloidal nano- and microparticles and computer simulations show that, unexpectedly, confinement and entropy are sufficient for the formation of icosahedral crystalline clusters of up to about 100,000 particles.
Icosahedral symmetry, which is not compatible with truly long-range order, can be found in many systems, such as liquids, glasses, atomic clusters, quasicrystals and virus-capsids
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
. To obtain arrangements with a high degree of icosahedral order from tens of particles or more, interparticle attractive interactions are considered to be essential
1
,
3
,
6
,
7
,
8
,
9
,
10
,
11
,
12
. Here, we report that entropy and spherical confinement suffice for the formation of icosahedral clusters consisting of up to 100,000 particles. Specifically, by using real-space measurements on nanometre- and micrometre-sized colloids, as well as computer simulations, we show that tens of thousands of hard spheres compressed under spherical confinement spontaneously crystallize into icosahedral clusters that are entropically favoured over the bulk face-centred cubic crystal structure
13
,
14
. Our findings provide insights into the interplay between confinement and crystallization and into how these are connected to the formation of icosahedral structures.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4072</identifier><identifier>PMID: 25173580</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1002 ; 639/925/357/354 ; Biomaterials ; Clusters ; Colloids ; Condensed Matter Physics ; Confinement ; Crystallization ; Crystals ; Entropy ; Formations ; Icosahedral phase ; letter ; Long range order ; Materials Science ; Nanoparticles ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials</subject><ispartof>Nature materials, 2015-01, Vol.14 (1), p.56-60</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Jan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-4d1015d905a1ed7a3a55eca61ef24a00b53e576fb376089c6868e73616fb94ab3</citedby><cites>FETCH-LOGICAL-c584t-4d1015d905a1ed7a3a55eca61ef24a00b53e576fb376089c6868e73616fb94ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25173580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Nijs, Bart</creatorcontrib><creatorcontrib>Dussi, Simone</creatorcontrib><creatorcontrib>Smallenburg, Frank</creatorcontrib><creatorcontrib>Meeldijk, Johannes D.</creatorcontrib><creatorcontrib>Groenendijk, Dirk J.</creatorcontrib><creatorcontrib>Filion, Laura</creatorcontrib><creatorcontrib>Imhof, Arnout</creatorcontrib><creatorcontrib>van Blaaderen, Alfons</creatorcontrib><creatorcontrib>Dijkstra, Marjolein</creatorcontrib><title>Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Experiments with colloidal nano- and microparticles and computer simulations show that, unexpectedly, confinement and entropy are sufficient for the formation of icosahedral crystalline clusters of up to about 100,000 particles.
Icosahedral symmetry, which is not compatible with truly long-range order, can be found in many systems, such as liquids, glasses, atomic clusters, quasicrystals and virus-capsids
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
. To obtain arrangements with a high degree of icosahedral order from tens of particles or more, interparticle attractive interactions are considered to be essential
1
,
3
,
6
,
7
,
8
,
9
,
10
,
11
,
12
. Here, we report that entropy and spherical confinement suffice for the formation of icosahedral clusters consisting of up to 100,000 particles. Specifically, by using real-space measurements on nanometre- and micrometre-sized colloids, as well as computer simulations, we show that tens of thousands of hard spheres compressed under spherical confinement spontaneously crystallize into icosahedral clusters that are entropically favoured over the bulk face-centred cubic crystal structure
13
,
14
. Our findings provide insights into the interplay between confinement and crystallization and into how these are connected to the formation of icosahedral structures.</description><subject>639/766/119/1002</subject><subject>639/925/357/354</subject><subject>Biomaterials</subject><subject>Clusters</subject><subject>Colloids</subject><subject>Condensed Matter Physics</subject><subject>Confinement</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Entropy</subject><subject>Formations</subject><subject>Icosahedral phase</subject><subject>letter</subject><subject>Long range order</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1Lw0AQhhdRrFbBXyABL3qI7mY_c5RSP6DgRQ-ewmYzaVOS3bibCP33prZV6cnTDDMPzzC8CF0QfEswVXe20R3DMjlAJ4RJETMh8OG2JyRJRug0hCXGCeFcHKNRwomkXOET9D61nXftKi589Qk2Kp0fXJWzkSujWvs5RJVxQS-g8LqOjKtrVxXrru5DBz5E-SoK7QJ8Zb73tqwsNGC7M3RU6jrA-baO0dvD9HXyFM9eHp8n97PYcMW6mBUEE16kmGsChdRUcw5GCwJlwjTGOafApShzKgVWqRFKKJBUkGGUMp3TMbreeFvvPnoIXdZUwUBdawuuDxkRIlWcikT-A6UyTblU6YBe7aFL13s7PDJQTBJCleC_QuNdCB7KrPVVo_0qIzhbJ5PtkhnQy62wzxsofsBdFANwswHCsLJz8H8u7su-AJV6lwc</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>de Nijs, Bart</creator><creator>Dussi, Simone</creator><creator>Smallenburg, Frank</creator><creator>Meeldijk, Johannes D.</creator><creator>Groenendijk, Dirk J.</creator><creator>Filion, Laura</creator><creator>Imhof, Arnout</creator><creator>van Blaaderen, Alfons</creator><creator>Dijkstra, Marjolein</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement</title><author>de Nijs, Bart ; Dussi, Simone ; Smallenburg, Frank ; Meeldijk, Johannes D. ; Groenendijk, Dirk J. ; Filion, Laura ; Imhof, Arnout ; van Blaaderen, Alfons ; Dijkstra, Marjolein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-4d1015d905a1ed7a3a55eca61ef24a00b53e576fb376089c6868e73616fb94ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/766/119/1002</topic><topic>639/925/357/354</topic><topic>Biomaterials</topic><topic>Clusters</topic><topic>Colloids</topic><topic>Condensed Matter Physics</topic><topic>Confinement</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Entropy</topic><topic>Formations</topic><topic>Icosahedral phase</topic><topic>letter</topic><topic>Long range order</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Nijs, Bart</creatorcontrib><creatorcontrib>Dussi, Simone</creatorcontrib><creatorcontrib>Smallenburg, Frank</creatorcontrib><creatorcontrib>Meeldijk, Johannes D.</creatorcontrib><creatorcontrib>Groenendijk, Dirk J.</creatorcontrib><creatorcontrib>Filion, Laura</creatorcontrib><creatorcontrib>Imhof, Arnout</creatorcontrib><creatorcontrib>van Blaaderen, Alfons</creatorcontrib><creatorcontrib>Dijkstra, Marjolein</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Journals (ProQuest Database)</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Nijs, Bart</au><au>Dussi, Simone</au><au>Smallenburg, Frank</au><au>Meeldijk, Johannes D.</au><au>Groenendijk, Dirk J.</au><au>Filion, Laura</au><au>Imhof, Arnout</au><au>van Blaaderen, Alfons</au><au>Dijkstra, Marjolein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>14</volume><issue>1</issue><spage>56</spage><epage>60</epage><pages>56-60</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Experiments with colloidal nano- and microparticles and computer simulations show that, unexpectedly, confinement and entropy are sufficient for the formation of icosahedral crystalline clusters of up to about 100,000 particles.
Icosahedral symmetry, which is not compatible with truly long-range order, can be found in many systems, such as liquids, glasses, atomic clusters, quasicrystals and virus-capsids
1
,
2
,
3
,
4
,
5
,
6
,
7
,
8
,
9
,
10
,
11
,
12
. To obtain arrangements with a high degree of icosahedral order from tens of particles or more, interparticle attractive interactions are considered to be essential
1
,
3
,
6
,
7
,
8
,
9
,
10
,
11
,
12
. Here, we report that entropy and spherical confinement suffice for the formation of icosahedral clusters consisting of up to 100,000 particles. Specifically, by using real-space measurements on nanometre- and micrometre-sized colloids, as well as computer simulations, we show that tens of thousands of hard spheres compressed under spherical confinement spontaneously crystallize into icosahedral clusters that are entropically favoured over the bulk face-centred cubic crystal structure
13
,
14
. Our findings provide insights into the interplay between confinement and crystallization and into how these are connected to the formation of icosahedral structures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25173580</pmid><doi>10.1038/nmat4072</doi><tpages>5</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-1122 |
ispartof | Nature materials, 2015-01, Vol.14 (1), p.56-60 |
issn | 1476-1122 1476-4660 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669853627 |
source | Nature |
subjects | 639/766/119/1002 639/925/357/354 Biomaterials Clusters Colloids Condensed Matter Physics Confinement Crystallization Crystals Entropy Formations Icosahedral phase letter Long range order Materials Science Nanoparticles Nanostructure Nanotechnology Optical and Electronic Materials |
title | Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy-driven%20formation%20of%20large%20icosahedral%20colloidal%20clusters%20by%20spherical%20confinement&rft.jtitle=Nature%20materials&rft.au=de%20Nijs,%20Bart&rft.date=2015-01-01&rft.volume=14&rft.issue=1&rft.spage=56&rft.epage=60&rft.pages=56-60&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4072&rft_dat=%3Cproquest_cross%3E3563877591%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c584t-4d1015d905a1ed7a3a55eca61ef24a00b53e576fb376089c6868e73616fb94ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1647113865&rft_id=info:pmid/25173580&rfr_iscdi=true |