Loading…

Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement

Experiments with colloidal nano- and microparticles and computer simulations show that, unexpectedly, confinement and entropy are sufficient for the formation of icosahedral crystalline clusters of up to about 100,000 particles. Icosahedral symmetry, which is not compatible with truly long-range ord...

Full description

Saved in:
Bibliographic Details
Published in:Nature materials 2015-01, Vol.14 (1), p.56-60
Main Authors: de Nijs, Bart, Dussi, Simone, Smallenburg, Frank, Meeldijk, Johannes D., Groenendijk, Dirk J., Filion, Laura, Imhof, Arnout, van Blaaderen, Alfons, Dijkstra, Marjolein
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c584t-4d1015d905a1ed7a3a55eca61ef24a00b53e576fb376089c6868e73616fb94ab3
cites cdi_FETCH-LOGICAL-c584t-4d1015d905a1ed7a3a55eca61ef24a00b53e576fb376089c6868e73616fb94ab3
container_end_page 60
container_issue 1
container_start_page 56
container_title Nature materials
container_volume 14
creator de Nijs, Bart
Dussi, Simone
Smallenburg, Frank
Meeldijk, Johannes D.
Groenendijk, Dirk J.
Filion, Laura
Imhof, Arnout
van Blaaderen, Alfons
Dijkstra, Marjolein
description Experiments with colloidal nano- and microparticles and computer simulations show that, unexpectedly, confinement and entropy are sufficient for the formation of icosahedral crystalline clusters of up to about 100,000 particles. Icosahedral symmetry, which is not compatible with truly long-range order, can be found in many systems, such as liquids, glasses, atomic clusters, quasicrystals and virus-capsids 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 . To obtain arrangements with a high degree of icosahedral order from tens of particles or more, interparticle attractive interactions are considered to be essential 1 , 3 , 6 , 7 , 8 , 9 , 10 , 11 , 12 . Here, we report that entropy and spherical confinement suffice for the formation of icosahedral clusters consisting of up to 100,000 particles. Specifically, by using real-space measurements on nanometre- and micrometre-sized colloids, as well as computer simulations, we show that tens of thousands of hard spheres compressed under spherical confinement spontaneously crystallize into icosahedral clusters that are entropically favoured over the bulk face-centred cubic crystal structure 13 , 14 . Our findings provide insights into the interplay between confinement and crystallization and into how these are connected to the formation of icosahedral structures.
doi_str_mv 10.1038/nmat4072
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669853627</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3563877591</sourcerecordid><originalsourceid>FETCH-LOGICAL-c584t-4d1015d905a1ed7a3a55eca61ef24a00b53e576fb376089c6868e73616fb94ab3</originalsourceid><addsrcrecordid>eNqNkU1Lw0AQhhdRrFbBXyABL3qI7mY_c5RSP6DgRQ-ewmYzaVOS3bibCP33prZV6cnTDDMPzzC8CF0QfEswVXe20R3DMjlAJ4RJETMh8OG2JyRJRug0hCXGCeFcHKNRwomkXOET9D61nXftKi589Qk2Kp0fXJWzkSujWvs5RJVxQS-g8LqOjKtrVxXrru5DBz5E-SoK7QJ8Zb73tqwsNGC7M3RU6jrA-baO0dvD9HXyFM9eHp8n97PYcMW6mBUEE16kmGsChdRUcw5GCwJlwjTGOafApShzKgVWqRFKKJBUkGGUMp3TMbreeFvvPnoIXdZUwUBdawuuDxkRIlWcikT-A6UyTblU6YBe7aFL13s7PDJQTBJCleC_QuNdCB7KrPVVo_0qIzhbJ5PtkhnQy62wzxsofsBdFANwswHCsLJz8H8u7su-AJV6lwc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647113865</pqid></control><display><type>article</type><title>Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement</title><source>Nature</source><creator>de Nijs, Bart ; Dussi, Simone ; Smallenburg, Frank ; Meeldijk, Johannes D. ; Groenendijk, Dirk J. ; Filion, Laura ; Imhof, Arnout ; van Blaaderen, Alfons ; Dijkstra, Marjolein</creator><creatorcontrib>de Nijs, Bart ; Dussi, Simone ; Smallenburg, Frank ; Meeldijk, Johannes D. ; Groenendijk, Dirk J. ; Filion, Laura ; Imhof, Arnout ; van Blaaderen, Alfons ; Dijkstra, Marjolein</creatorcontrib><description>Experiments with colloidal nano- and microparticles and computer simulations show that, unexpectedly, confinement and entropy are sufficient for the formation of icosahedral crystalline clusters of up to about 100,000 particles. Icosahedral symmetry, which is not compatible with truly long-range order, can be found in many systems, such as liquids, glasses, atomic clusters, quasicrystals and virus-capsids 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 . To obtain arrangements with a high degree of icosahedral order from tens of particles or more, interparticle attractive interactions are considered to be essential 1 , 3 , 6 , 7 , 8 , 9 , 10 , 11 , 12 . Here, we report that entropy and spherical confinement suffice for the formation of icosahedral clusters consisting of up to 100,000 particles. Specifically, by using real-space measurements on nanometre- and micrometre-sized colloids, as well as computer simulations, we show that tens of thousands of hard spheres compressed under spherical confinement spontaneously crystallize into icosahedral clusters that are entropically favoured over the bulk face-centred cubic crystal structure 13 , 14 . Our findings provide insights into the interplay between confinement and crystallization and into how these are connected to the formation of icosahedral structures.</description><identifier>ISSN: 1476-1122</identifier><identifier>EISSN: 1476-4660</identifier><identifier>DOI: 10.1038/nmat4072</identifier><identifier>PMID: 25173580</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1002 ; 639/925/357/354 ; Biomaterials ; Clusters ; Colloids ; Condensed Matter Physics ; Confinement ; Crystallization ; Crystals ; Entropy ; Formations ; Icosahedral phase ; letter ; Long range order ; Materials Science ; Nanoparticles ; Nanostructure ; Nanotechnology ; Optical and Electronic Materials</subject><ispartof>Nature materials, 2015-01, Vol.14 (1), p.56-60</ispartof><rights>Springer Nature Limited 2014</rights><rights>Copyright Nature Publishing Group Jan 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c584t-4d1015d905a1ed7a3a55eca61ef24a00b53e576fb376089c6868e73616fb94ab3</citedby><cites>FETCH-LOGICAL-c584t-4d1015d905a1ed7a3a55eca61ef24a00b53e576fb376089c6868e73616fb94ab3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25173580$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>de Nijs, Bart</creatorcontrib><creatorcontrib>Dussi, Simone</creatorcontrib><creatorcontrib>Smallenburg, Frank</creatorcontrib><creatorcontrib>Meeldijk, Johannes D.</creatorcontrib><creatorcontrib>Groenendijk, Dirk J.</creatorcontrib><creatorcontrib>Filion, Laura</creatorcontrib><creatorcontrib>Imhof, Arnout</creatorcontrib><creatorcontrib>van Blaaderen, Alfons</creatorcontrib><creatorcontrib>Dijkstra, Marjolein</creatorcontrib><title>Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement</title><title>Nature materials</title><addtitle>Nature Mater</addtitle><addtitle>Nat Mater</addtitle><description>Experiments with colloidal nano- and microparticles and computer simulations show that, unexpectedly, confinement and entropy are sufficient for the formation of icosahedral crystalline clusters of up to about 100,000 particles. Icosahedral symmetry, which is not compatible with truly long-range order, can be found in many systems, such as liquids, glasses, atomic clusters, quasicrystals and virus-capsids 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 . To obtain arrangements with a high degree of icosahedral order from tens of particles or more, interparticle attractive interactions are considered to be essential 1 , 3 , 6 , 7 , 8 , 9 , 10 , 11 , 12 . Here, we report that entropy and spherical confinement suffice for the formation of icosahedral clusters consisting of up to 100,000 particles. Specifically, by using real-space measurements on nanometre- and micrometre-sized colloids, as well as computer simulations, we show that tens of thousands of hard spheres compressed under spherical confinement spontaneously crystallize into icosahedral clusters that are entropically favoured over the bulk face-centred cubic crystal structure 13 , 14 . Our findings provide insights into the interplay between confinement and crystallization and into how these are connected to the formation of icosahedral structures.</description><subject>639/766/119/1002</subject><subject>639/925/357/354</subject><subject>Biomaterials</subject><subject>Clusters</subject><subject>Colloids</subject><subject>Condensed Matter Physics</subject><subject>Confinement</subject><subject>Crystallization</subject><subject>Crystals</subject><subject>Entropy</subject><subject>Formations</subject><subject>Icosahedral phase</subject><subject>letter</subject><subject>Long range order</subject><subject>Materials Science</subject><subject>Nanoparticles</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Optical and Electronic Materials</subject><issn>1476-1122</issn><issn>1476-4660</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkU1Lw0AQhhdRrFbBXyABL3qI7mY_c5RSP6DgRQ-ewmYzaVOS3bibCP33prZV6cnTDDMPzzC8CF0QfEswVXe20R3DMjlAJ4RJETMh8OG2JyRJRug0hCXGCeFcHKNRwomkXOET9D61nXftKi589Qk2Kp0fXJWzkSujWvs5RJVxQS-g8LqOjKtrVxXrru5DBz5E-SoK7QJ8Zb73tqwsNGC7M3RU6jrA-baO0dvD9HXyFM9eHp8n97PYcMW6mBUEE16kmGsChdRUcw5GCwJlwjTGOafApShzKgVWqRFKKJBUkGGUMp3TMbreeFvvPnoIXdZUwUBdawuuDxkRIlWcikT-A6UyTblU6YBe7aFL13s7PDJQTBJCleC_QuNdCB7KrPVVo_0qIzhbJ5PtkhnQy62wzxsofsBdFANwswHCsLJz8H8u7su-AJV6lwc</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>de Nijs, Bart</creator><creator>Dussi, Simone</creator><creator>Smallenburg, Frank</creator><creator>Meeldijk, Johannes D.</creator><creator>Groenendijk, Dirk J.</creator><creator>Filion, Laura</creator><creator>Imhof, Arnout</creator><creator>van Blaaderen, Alfons</creator><creator>Dijkstra, Marjolein</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SR</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L6V</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7S</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>7X8</scope><scope>7U5</scope><scope>L7M</scope></search><sort><creationdate>20150101</creationdate><title>Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement</title><author>de Nijs, Bart ; Dussi, Simone ; Smallenburg, Frank ; Meeldijk, Johannes D. ; Groenendijk, Dirk J. ; Filion, Laura ; Imhof, Arnout ; van Blaaderen, Alfons ; Dijkstra, Marjolein</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c584t-4d1015d905a1ed7a3a55eca61ef24a00b53e576fb376089c6868e73616fb94ab3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>639/766/119/1002</topic><topic>639/925/357/354</topic><topic>Biomaterials</topic><topic>Clusters</topic><topic>Colloids</topic><topic>Condensed Matter Physics</topic><topic>Confinement</topic><topic>Crystallization</topic><topic>Crystals</topic><topic>Entropy</topic><topic>Formations</topic><topic>Icosahedral phase</topic><topic>letter</topic><topic>Long range order</topic><topic>Materials Science</topic><topic>Nanoparticles</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Optical and Electronic Materials</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>de Nijs, Bart</creatorcontrib><creatorcontrib>Dussi, Simone</creatorcontrib><creatorcontrib>Smallenburg, Frank</creatorcontrib><creatorcontrib>Meeldijk, Johannes D.</creatorcontrib><creatorcontrib>Groenendijk, Dirk J.</creatorcontrib><creatorcontrib>Filion, Laura</creatorcontrib><creatorcontrib>Imhof, Arnout</creatorcontrib><creatorcontrib>van Blaaderen, Alfons</creatorcontrib><creatorcontrib>Dijkstra, Marjolein</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Engineered Materials Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>ProQuest Engineering Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Journals (ProQuest Database)</collection><collection>Engineering Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Nature materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>de Nijs, Bart</au><au>Dussi, Simone</au><au>Smallenburg, Frank</au><au>Meeldijk, Johannes D.</au><au>Groenendijk, Dirk J.</au><au>Filion, Laura</au><au>Imhof, Arnout</au><au>van Blaaderen, Alfons</au><au>Dijkstra, Marjolein</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement</atitle><jtitle>Nature materials</jtitle><stitle>Nature Mater</stitle><addtitle>Nat Mater</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>14</volume><issue>1</issue><spage>56</spage><epage>60</epage><pages>56-60</pages><issn>1476-1122</issn><eissn>1476-4660</eissn><abstract>Experiments with colloidal nano- and microparticles and computer simulations show that, unexpectedly, confinement and entropy are sufficient for the formation of icosahedral crystalline clusters of up to about 100,000 particles. Icosahedral symmetry, which is not compatible with truly long-range order, can be found in many systems, such as liquids, glasses, atomic clusters, quasicrystals and virus-capsids 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 , 10 , 11 , 12 . To obtain arrangements with a high degree of icosahedral order from tens of particles or more, interparticle attractive interactions are considered to be essential 1 , 3 , 6 , 7 , 8 , 9 , 10 , 11 , 12 . Here, we report that entropy and spherical confinement suffice for the formation of icosahedral clusters consisting of up to 100,000 particles. Specifically, by using real-space measurements on nanometre- and micrometre-sized colloids, as well as computer simulations, we show that tens of thousands of hard spheres compressed under spherical confinement spontaneously crystallize into icosahedral clusters that are entropically favoured over the bulk face-centred cubic crystal structure 13 , 14 . Our findings provide insights into the interplay between confinement and crystallization and into how these are connected to the formation of icosahedral structures.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>25173580</pmid><doi>10.1038/nmat4072</doi><tpages>5</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-1122
ispartof Nature materials, 2015-01, Vol.14 (1), p.56-60
issn 1476-1122
1476-4660
language eng
recordid cdi_proquest_miscellaneous_1669853627
source Nature
subjects 639/766/119/1002
639/925/357/354
Biomaterials
Clusters
Colloids
Condensed Matter Physics
Confinement
Crystallization
Crystals
Entropy
Formations
Icosahedral phase
letter
Long range order
Materials Science
Nanoparticles
Nanostructure
Nanotechnology
Optical and Electronic Materials
title Entropy-driven formation of large icosahedral colloidal clusters by spherical confinement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T10%3A46%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Entropy-driven%20formation%20of%20large%20icosahedral%20colloidal%20clusters%20by%20spherical%20confinement&rft.jtitle=Nature%20materials&rft.au=de%20Nijs,%20Bart&rft.date=2015-01-01&rft.volume=14&rft.issue=1&rft.spage=56&rft.epage=60&rft.pages=56-60&rft.issn=1476-1122&rft.eissn=1476-4660&rft_id=info:doi/10.1038/nmat4072&rft_dat=%3Cproquest_cross%3E3563877591%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c584t-4d1015d905a1ed7a3a55eca61ef24a00b53e576fb376089c6868e73616fb94ab3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1647113865&rft_id=info:pmid/25173580&rfr_iscdi=true