Loading…
Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties
Rhodium (Rh) is a critical component of many catalysts for a variety of chemical transformation processes. Controlling the shape of Rh nanocrystals offers an effective route to the optimization of their catalytic performance owing to a close correlation between the catalytic activity/selectivity and...
Saved in:
Published in: | Nano research 2015-01, Vol.8 (1), p.82-96 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c446t-681a4707fa0c785d036d24b8ab1a138c8a5baf8aaa86f88dcc2d39635ace87263 |
---|---|
cites | cdi_FETCH-LOGICAL-c446t-681a4707fa0c785d036d24b8ab1a138c8a5baf8aaa86f88dcc2d39635ace87263 |
container_end_page | 96 |
container_issue | 1 |
container_start_page | 82 |
container_title | Nano research |
container_volume | 8 |
creator | Xie, Shuifen Liu, Xiang Yang Xia, Younan |
description | Rhodium (Rh) is a critical component of many catalysts for a variety of chemical transformation processes. Controlling the shape of Rh nanocrystals offers an effective route to the optimization of their catalytic performance owing to a close correlation between the catalytic activity/selectivity and the surface atomic structure. It also helps to substantially reduce the loading amount and thus achieve a sustainable use of this scarce and precious metal. In this review article, we focus on recent progress in the shape-controlled synthesis of Rh nanocrystals with the goal of enhandng their catalytic properties. Both traditional and newly- developed synthetic strategies and growth mechanisms will be discussed, including those based on the use of surface capping agents, manipulation of reduction kinetics, control of surface diffusion rate, management of oxidation etching, and electrochemical alteration. We also use two examples to highlight the unique opportunities offered by shape-controlled synthesis for enhancing the use of this metal in catalytic applications. The strategies can also be extended to other precious metals in an effort to advance the production of cost-effective catalysts. |
doi_str_mv | 10.1007/s12274-014-0674-x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669853723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665085594</cqvip_id><sourcerecordid>1669853723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-681a4707fa0c785d036d24b8ab1a138c8a5baf8aaa86f88dcc2d39635ace87263</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouH78AG9BL16qSZqm6VEWv2DBg3oOs2m67dImu0kXdv-9s3QV8WBgyDA877zDmyRXjN4xSov7yDgvREoZlsRme5RMWFmqlOI7_u4ZF6fJWYxLSiVnQk2S6r2BlU2Nd0PwXWcrEnduaGy0kfiahMZX7aYnDpw3YRcH6CKpfSCIEOsacMb21g17FkdtIAaQ2Q2tIavgVzYMrY0XyUmNQnt5-M-Tz6fHj-lLOnt7fp0-zFIjhBxSqRiIghY1UFOovKKZrLiYK5gzYJkyCvI51AoAlKyVqozhVVbKLAdjVcFldp7cjnvRer2xcdB9G43tOnDWb6JmUpYqzwqeIXrzB136TXB4HVICsZKVFCk2Uib4GIOt9Sq0PYSdZlTvc9dj7hpz1_vc9RY1fNREZN3Chl-b_xFdH4wa7xZr1P04SZlTleelyL4Aat6TTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1646989190</pqid></control><display><type>article</type><title>Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Xie, Shuifen ; Liu, Xiang Yang ; Xia, Younan</creator><creatorcontrib>Xie, Shuifen ; Liu, Xiang Yang ; Xia, Younan</creatorcontrib><description>Rhodium (Rh) is a critical component of many catalysts for a variety of chemical transformation processes. Controlling the shape of Rh nanocrystals offers an effective route to the optimization of their catalytic performance owing to a close correlation between the catalytic activity/selectivity and the surface atomic structure. It also helps to substantially reduce the loading amount and thus achieve a sustainable use of this scarce and precious metal. In this review article, we focus on recent progress in the shape-controlled synthesis of Rh nanocrystals with the goal of enhandng their catalytic properties. Both traditional and newly- developed synthetic strategies and growth mechanisms will be discussed, including those based on the use of surface capping agents, manipulation of reduction kinetics, control of surface diffusion rate, management of oxidation etching, and electrochemical alteration. We also use two examples to highlight the unique opportunities offered by shape-controlled synthesis for enhancing the use of this metal in catalytic applications. The strategies can also be extended to other precious metals in an effort to advance the production of cost-effective catalysts.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-014-0674-x</identifier><language>eng</language><publisher>Heidelberg: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Catalysis ; Catalysts ; Chemistry and Materials Science ; Condensed Matter Physics ; Control surfaces ; Electrochemistry ; Materials Science ; Nanocrystals ; Nanostructure ; Nanotechnology ; Precious metals ; Review Article ; Rhodium ; Strategy ; Sustainable use ; Synthesis ; 催化性能 ; 可持续利用 ; 形状 ; 控制合成 ; 纳米晶体 ; 表面原子结构 ; 还原动力学 ; 铑</subject><ispartof>Nano research, 2015-01, Vol.8 (1), p.82-96</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-681a4707fa0c785d036d24b8ab1a138c8a5baf8aaa86f88dcc2d39635ace87263</citedby><cites>FETCH-LOGICAL-c446t-681a4707fa0c785d036d24b8ab1a138c8a5baf8aaa86f88dcc2d39635ace87263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xie, Shuifen</creatorcontrib><creatorcontrib>Liu, Xiang Yang</creatorcontrib><creatorcontrib>Xia, Younan</creatorcontrib><title>Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>Rhodium (Rh) is a critical component of many catalysts for a variety of chemical transformation processes. Controlling the shape of Rh nanocrystals offers an effective route to the optimization of their catalytic performance owing to a close correlation between the catalytic activity/selectivity and the surface atomic structure. It also helps to substantially reduce the loading amount and thus achieve a sustainable use of this scarce and precious metal. In this review article, we focus on recent progress in the shape-controlled synthesis of Rh nanocrystals with the goal of enhandng their catalytic properties. Both traditional and newly- developed synthetic strategies and growth mechanisms will be discussed, including those based on the use of surface capping agents, manipulation of reduction kinetics, control of surface diffusion rate, management of oxidation etching, and electrochemical alteration. We also use two examples to highlight the unique opportunities offered by shape-controlled synthesis for enhancing the use of this metal in catalytic applications. The strategies can also be extended to other precious metals in an effort to advance the production of cost-effective catalysts.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Control surfaces</subject><subject>Electrochemistry</subject><subject>Materials Science</subject><subject>Nanocrystals</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Precious metals</subject><subject>Review Article</subject><subject>Rhodium</subject><subject>Strategy</subject><subject>Sustainable use</subject><subject>Synthesis</subject><subject>催化性能</subject><subject>可持续利用</subject><subject>形状</subject><subject>控制合成</subject><subject>纳米晶体</subject><subject>表面原子结构</subject><subject>还原动力学</subject><subject>铑</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosouH78AG9BL16qSZqm6VEWv2DBg3oOs2m67dImu0kXdv-9s3QV8WBgyDA877zDmyRXjN4xSov7yDgvREoZlsRme5RMWFmqlOI7_u4ZF6fJWYxLSiVnQk2S6r2BlU2Nd0PwXWcrEnduaGy0kfiahMZX7aYnDpw3YRcH6CKpfSCIEOsacMb21g17FkdtIAaQ2Q2tIavgVzYMrY0XyUmNQnt5-M-Tz6fHj-lLOnt7fp0-zFIjhBxSqRiIghY1UFOovKKZrLiYK5gzYJkyCvI51AoAlKyVqozhVVbKLAdjVcFldp7cjnvRer2xcdB9G43tOnDWb6JmUpYqzwqeIXrzB136TXB4HVICsZKVFCk2Uib4GIOt9Sq0PYSdZlTvc9dj7hpz1_vc9RY1fNREZN3Chl-b_xFdH4wa7xZr1P04SZlTleelyL4Aat6TTA</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Xie, Shuifen</creator><creator>Liu, Xiang Yang</creator><creator>Xia, Younan</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20150101</creationdate><title>Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties</title><author>Xie, Shuifen ; Liu, Xiang Yang ; Xia, Younan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-681a4707fa0c785d036d24b8ab1a138c8a5baf8aaa86f88dcc2d39635ace87263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Control surfaces</topic><topic>Electrochemistry</topic><topic>Materials Science</topic><topic>Nanocrystals</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Precious metals</topic><topic>Review Article</topic><topic>Rhodium</topic><topic>Strategy</topic><topic>Sustainable use</topic><topic>Synthesis</topic><topic>催化性能</topic><topic>可持续利用</topic><topic>形状</topic><topic>控制合成</topic><topic>纳米晶体</topic><topic>表面原子结构</topic><topic>还原动力学</topic><topic>铑</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Shuifen</creatorcontrib><creatorcontrib>Liu, Xiang Yang</creatorcontrib><creatorcontrib>Xia, Younan</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Shuifen</au><au>Liu, Xiang Yang</au><au>Xia, Younan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>8</volume><issue>1</issue><spage>82</spage><epage>96</epage><pages>82-96</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Rhodium (Rh) is a critical component of many catalysts for a variety of chemical transformation processes. Controlling the shape of Rh nanocrystals offers an effective route to the optimization of their catalytic performance owing to a close correlation between the catalytic activity/selectivity and the surface atomic structure. It also helps to substantially reduce the loading amount and thus achieve a sustainable use of this scarce and precious metal. In this review article, we focus on recent progress in the shape-controlled synthesis of Rh nanocrystals with the goal of enhandng their catalytic properties. Both traditional and newly- developed synthetic strategies and growth mechanisms will be discussed, including those based on the use of surface capping agents, manipulation of reduction kinetics, control of surface diffusion rate, management of oxidation etching, and electrochemical alteration. We also use two examples to highlight the unique opportunities offered by shape-controlled synthesis for enhancing the use of this metal in catalytic applications. The strategies can also be extended to other precious metals in an effort to advance the production of cost-effective catalysts.</abstract><cop>Heidelberg</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-014-0674-x</doi><tpages>15</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1998-0124 |
ispartof | Nano research, 2015-01, Vol.8 (1), p.82-96 |
issn | 1998-0124 1998-0000 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669853723 |
source | Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List |
subjects | Atomic/Molecular Structure and Spectra Biomedicine Biotechnology Catalysis Catalysts Chemistry and Materials Science Condensed Matter Physics Control surfaces Electrochemistry Materials Science Nanocrystals Nanostructure Nanotechnology Precious metals Review Article Rhodium Strategy Sustainable use Synthesis 催化性能 可持续利用 形状 控制合成 纳米晶体 表面原子结构 还原动力学 铑 |
title | Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape-controlled%20syntheses%20of%20rhodium%20nanocrystals%20for%20the%20enhancement%20of%20their%20catalytic%20properties&rft.jtitle=Nano%20research&rft.au=Xie,%20Shuifen&rft.date=2015-01-01&rft.volume=8&rft.issue=1&rft.spage=82&rft.epage=96&rft.pages=82-96&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-014-0674-x&rft_dat=%3Cproquest_cross%3E1669853723%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-681a4707fa0c785d036d24b8ab1a138c8a5baf8aaa86f88dcc2d39635ace87263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1646989190&rft_id=info:pmid/&rft_cqvip_id=665085594&rfr_iscdi=true |