Loading…

Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties

Rhodium (Rh) is a critical component of many catalysts for a variety of chemical transformation processes. Controlling the shape of Rh nanocrystals offers an effective route to the optimization of their catalytic performance owing to a close correlation between the catalytic activity/selectivity and...

Full description

Saved in:
Bibliographic Details
Published in:Nano research 2015-01, Vol.8 (1), p.82-96
Main Authors: Xie, Shuifen, Liu, Xiang Yang, Xia, Younan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c446t-681a4707fa0c785d036d24b8ab1a138c8a5baf8aaa86f88dcc2d39635ace87263
cites cdi_FETCH-LOGICAL-c446t-681a4707fa0c785d036d24b8ab1a138c8a5baf8aaa86f88dcc2d39635ace87263
container_end_page 96
container_issue 1
container_start_page 82
container_title Nano research
container_volume 8
creator Xie, Shuifen
Liu, Xiang Yang
Xia, Younan
description Rhodium (Rh) is a critical component of many catalysts for a variety of chemical transformation processes. Controlling the shape of Rh nanocrystals offers an effective route to the optimization of their catalytic performance owing to a close correlation between the catalytic activity/selectivity and the surface atomic structure. It also helps to substantially reduce the loading amount and thus achieve a sustainable use of this scarce and precious metal. In this review article, we focus on recent progress in the shape-controlled synthesis of Rh nanocrystals with the goal of enhandng their catalytic properties. Both traditional and newly- developed synthetic strategies and growth mechanisms will be discussed, including those based on the use of surface capping agents, manipulation of reduction kinetics, control of surface diffusion rate, management of oxidation etching, and electrochemical alteration. We also use two examples to highlight the unique opportunities offered by shape-controlled synthesis for enhancing the use of this metal in catalytic applications. The strategies can also be extended to other precious metals in an effort to advance the production of cost-effective catalysts.
doi_str_mv 10.1007/s12274-014-0674-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669853723</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><cqvip_id>665085594</cqvip_id><sourcerecordid>1669853723</sourcerecordid><originalsourceid>FETCH-LOGICAL-c446t-681a4707fa0c785d036d24b8ab1a138c8a5baf8aaa86f88dcc2d39635ace87263</originalsourceid><addsrcrecordid>eNp9kE1LxDAQhosouH78AG9BL16qSZqm6VEWv2DBg3oOs2m67dImu0kXdv-9s3QV8WBgyDA877zDmyRXjN4xSov7yDgvREoZlsRme5RMWFmqlOI7_u4ZF6fJWYxLSiVnQk2S6r2BlU2Nd0PwXWcrEnduaGy0kfiahMZX7aYnDpw3YRcH6CKpfSCIEOsacMb21g17FkdtIAaQ2Q2tIavgVzYMrY0XyUmNQnt5-M-Tz6fHj-lLOnt7fp0-zFIjhBxSqRiIghY1UFOovKKZrLiYK5gzYJkyCvI51AoAlKyVqozhVVbKLAdjVcFldp7cjnvRer2xcdB9G43tOnDWb6JmUpYqzwqeIXrzB136TXB4HVICsZKVFCk2Uib4GIOt9Sq0PYSdZlTvc9dj7hpz1_vc9RY1fNREZN3Chl-b_xFdH4wa7xZr1P04SZlTleelyL4Aat6TTA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1646989190</pqid></control><display><type>article</type><title>Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties</title><source>Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List</source><creator>Xie, Shuifen ; Liu, Xiang Yang ; Xia, Younan</creator><creatorcontrib>Xie, Shuifen ; Liu, Xiang Yang ; Xia, Younan</creatorcontrib><description>Rhodium (Rh) is a critical component of many catalysts for a variety of chemical transformation processes. Controlling the shape of Rh nanocrystals offers an effective route to the optimization of their catalytic performance owing to a close correlation between the catalytic activity/selectivity and the surface atomic structure. It also helps to substantially reduce the loading amount and thus achieve a sustainable use of this scarce and precious metal. In this review article, we focus on recent progress in the shape-controlled synthesis of Rh nanocrystals with the goal of enhandng their catalytic properties. Both traditional and newly- developed synthetic strategies and growth mechanisms will be discussed, including those based on the use of surface capping agents, manipulation of reduction kinetics, control of surface diffusion rate, management of oxidation etching, and electrochemical alteration. We also use two examples to highlight the unique opportunities offered by shape-controlled synthesis for enhancing the use of this metal in catalytic applications. The strategies can also be extended to other precious metals in an effort to advance the production of cost-effective catalysts.</description><identifier>ISSN: 1998-0124</identifier><identifier>EISSN: 1998-0000</identifier><identifier>DOI: 10.1007/s12274-014-0674-x</identifier><language>eng</language><publisher>Heidelberg: Tsinghua University Press</publisher><subject>Atomic/Molecular Structure and Spectra ; Biomedicine ; Biotechnology ; Catalysis ; Catalysts ; Chemistry and Materials Science ; Condensed Matter Physics ; Control surfaces ; Electrochemistry ; Materials Science ; Nanocrystals ; Nanostructure ; Nanotechnology ; Precious metals ; Review Article ; Rhodium ; Strategy ; Sustainable use ; Synthesis ; 催化性能 ; 可持续利用 ; 形状 ; 控制合成 ; 纳米晶体 ; 表面原子结构 ; 还原动力学 ; 铑</subject><ispartof>Nano research, 2015-01, Vol.8 (1), p.82-96</ispartof><rights>Tsinghua University Press and Springer-Verlag Berlin Heidelberg 2015</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c446t-681a4707fa0c785d036d24b8ab1a138c8a5baf8aaa86f88dcc2d39635ace87263</citedby><cites>FETCH-LOGICAL-c446t-681a4707fa0c785d036d24b8ab1a138c8a5baf8aaa86f88dcc2d39635ace87263</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Uhttp://image.cqvip.com/vip1000/qk/71233X/71233X.jpg</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Xie, Shuifen</creatorcontrib><creatorcontrib>Liu, Xiang Yang</creatorcontrib><creatorcontrib>Xia, Younan</creatorcontrib><title>Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties</title><title>Nano research</title><addtitle>Nano Res</addtitle><addtitle>Nano Research</addtitle><description>Rhodium (Rh) is a critical component of many catalysts for a variety of chemical transformation processes. Controlling the shape of Rh nanocrystals offers an effective route to the optimization of their catalytic performance owing to a close correlation between the catalytic activity/selectivity and the surface atomic structure. It also helps to substantially reduce the loading amount and thus achieve a sustainable use of this scarce and precious metal. In this review article, we focus on recent progress in the shape-controlled synthesis of Rh nanocrystals with the goal of enhandng their catalytic properties. Both traditional and newly- developed synthetic strategies and growth mechanisms will be discussed, including those based on the use of surface capping agents, manipulation of reduction kinetics, control of surface diffusion rate, management of oxidation etching, and electrochemical alteration. We also use two examples to highlight the unique opportunities offered by shape-controlled synthesis for enhancing the use of this metal in catalytic applications. The strategies can also be extended to other precious metals in an effort to advance the production of cost-effective catalysts.</description><subject>Atomic/Molecular Structure and Spectra</subject><subject>Biomedicine</subject><subject>Biotechnology</subject><subject>Catalysis</subject><subject>Catalysts</subject><subject>Chemistry and Materials Science</subject><subject>Condensed Matter Physics</subject><subject>Control surfaces</subject><subject>Electrochemistry</subject><subject>Materials Science</subject><subject>Nanocrystals</subject><subject>Nanostructure</subject><subject>Nanotechnology</subject><subject>Precious metals</subject><subject>Review Article</subject><subject>Rhodium</subject><subject>Strategy</subject><subject>Sustainable use</subject><subject>Synthesis</subject><subject>催化性能</subject><subject>可持续利用</subject><subject>形状</subject><subject>控制合成</subject><subject>纳米晶体</subject><subject>表面原子结构</subject><subject>还原动力学</subject><subject>铑</subject><issn>1998-0124</issn><issn>1998-0000</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp9kE1LxDAQhosouH78AG9BL16qSZqm6VEWv2DBg3oOs2m67dImu0kXdv-9s3QV8WBgyDA877zDmyRXjN4xSov7yDgvREoZlsRme5RMWFmqlOI7_u4ZF6fJWYxLSiVnQk2S6r2BlU2Nd0PwXWcrEnduaGy0kfiahMZX7aYnDpw3YRcH6CKpfSCIEOsacMb21g17FkdtIAaQ2Q2tIavgVzYMrY0XyUmNQnt5-M-Tz6fHj-lLOnt7fp0-zFIjhBxSqRiIghY1UFOovKKZrLiYK5gzYJkyCvI51AoAlKyVqozhVVbKLAdjVcFldp7cjnvRer2xcdB9G43tOnDWb6JmUpYqzwqeIXrzB136TXB4HVICsZKVFCk2Uib4GIOt9Sq0PYSdZlTvc9dj7hpz1_vc9RY1fNREZN3Chl-b_xFdH4wa7xZr1P04SZlTleelyL4Aat6TTA</recordid><startdate>20150101</startdate><enddate>20150101</enddate><creator>Xie, Shuifen</creator><creator>Liu, Xiang Yang</creator><creator>Xia, Younan</creator><general>Tsinghua University Press</general><general>Springer Nature B.V</general><scope>2RA</scope><scope>92L</scope><scope>CQIGP</scope><scope>~WA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SE</scope><scope>7SR</scope><scope>7U5</scope><scope>7X7</scope><scope>7XB</scope><scope>8AO</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>LK8</scope><scope>M0S</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope></search><sort><creationdate>20150101</creationdate><title>Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties</title><author>Xie, Shuifen ; Liu, Xiang Yang ; Xia, Younan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c446t-681a4707fa0c785d036d24b8ab1a138c8a5baf8aaa86f88dcc2d39635ace87263</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Atomic/Molecular Structure and Spectra</topic><topic>Biomedicine</topic><topic>Biotechnology</topic><topic>Catalysis</topic><topic>Catalysts</topic><topic>Chemistry and Materials Science</topic><topic>Condensed Matter Physics</topic><topic>Control surfaces</topic><topic>Electrochemistry</topic><topic>Materials Science</topic><topic>Nanocrystals</topic><topic>Nanostructure</topic><topic>Nanotechnology</topic><topic>Precious metals</topic><topic>Review Article</topic><topic>Rhodium</topic><topic>Strategy</topic><topic>Sustainable use</topic><topic>Synthesis</topic><topic>催化性能</topic><topic>可持续利用</topic><topic>形状</topic><topic>控制合成</topic><topic>纳米晶体</topic><topic>表面原子结构</topic><topic>还原动力学</topic><topic>铑</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Xie, Shuifen</creatorcontrib><creatorcontrib>Liu, Xiang Yang</creatorcontrib><creatorcontrib>Xia, Younan</creatorcontrib><collection>中文科技期刊数据库</collection><collection>中文科技期刊数据库-CALIS站点</collection><collection>中文科技期刊数据库-7.0平台</collection><collection>中文科技期刊数据库- 镜像站点</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest Pharma Collection</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><jtitle>Nano research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Xie, Shuifen</au><au>Liu, Xiang Yang</au><au>Xia, Younan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties</atitle><jtitle>Nano research</jtitle><stitle>Nano Res</stitle><addtitle>Nano Research</addtitle><date>2015-01-01</date><risdate>2015</risdate><volume>8</volume><issue>1</issue><spage>82</spage><epage>96</epage><pages>82-96</pages><issn>1998-0124</issn><eissn>1998-0000</eissn><abstract>Rhodium (Rh) is a critical component of many catalysts for a variety of chemical transformation processes. Controlling the shape of Rh nanocrystals offers an effective route to the optimization of their catalytic performance owing to a close correlation between the catalytic activity/selectivity and the surface atomic structure. It also helps to substantially reduce the loading amount and thus achieve a sustainable use of this scarce and precious metal. In this review article, we focus on recent progress in the shape-controlled synthesis of Rh nanocrystals with the goal of enhandng their catalytic properties. Both traditional and newly- developed synthetic strategies and growth mechanisms will be discussed, including those based on the use of surface capping agents, manipulation of reduction kinetics, control of surface diffusion rate, management of oxidation etching, and electrochemical alteration. We also use two examples to highlight the unique opportunities offered by shape-controlled synthesis for enhancing the use of this metal in catalytic applications. The strategies can also be extended to other precious metals in an effort to advance the production of cost-effective catalysts.</abstract><cop>Heidelberg</cop><pub>Tsinghua University Press</pub><doi>10.1007/s12274-014-0674-x</doi><tpages>15</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1998-0124
ispartof Nano research, 2015-01, Vol.8 (1), p.82-96
issn 1998-0124
1998-0000
language eng
recordid cdi_proquest_miscellaneous_1669853723
source Springer Nature:Jisc Collections:Springer Nature Read and Publish 2023-2025: Springer Reading List
subjects Atomic/Molecular Structure and Spectra
Biomedicine
Biotechnology
Catalysis
Catalysts
Chemistry and Materials Science
Condensed Matter Physics
Control surfaces
Electrochemistry
Materials Science
Nanocrystals
Nanostructure
Nanotechnology
Precious metals
Review Article
Rhodium
Strategy
Sustainable use
Synthesis
催化性能
可持续利用
形状
控制合成
纳米晶体
表面原子结构
还原动力学

title Shape-controlled syntheses of rhodium nanocrystals for the enhancement of their catalytic properties
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T03%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Shape-controlled%20syntheses%20of%20rhodium%20nanocrystals%20for%20the%20enhancement%20of%20their%20catalytic%20properties&rft.jtitle=Nano%20research&rft.au=Xie,%20Shuifen&rft.date=2015-01-01&rft.volume=8&rft.issue=1&rft.spage=82&rft.epage=96&rft.pages=82-96&rft.issn=1998-0124&rft.eissn=1998-0000&rft_id=info:doi/10.1007/s12274-014-0674-x&rft_dat=%3Cproquest_cross%3E1669853723%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c446t-681a4707fa0c785d036d24b8ab1a138c8a5baf8aaa86f88dcc2d39635ace87263%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1646989190&rft_id=info:pmid/&rft_cqvip_id=665085594&rfr_iscdi=true