Loading…

Numerical analysis of flow in a highly efficient flotation column

For the purpose of optimization by numerical analysis, a highly efficient flotation column named cyclonic‐static micro‐bubble flotation apparatus, which is widely used in mineral processing, was simulated with computational fluid dynamics to study the distributions of velocity magnitude, pathlines,...

Full description

Saved in:
Bibliographic Details
Published in:Asia-Pacific journal of chemical engineering 2015-01, Vol.10 (1), p.84-95
Main Authors: Gong, Maoming, Li, Chunshan, Li, Zengxi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:For the purpose of optimization by numerical analysis, a highly efficient flotation column named cyclonic‐static micro‐bubble flotation apparatus, which is widely used in mineral processing, was simulated with computational fluid dynamics to study the distributions of velocity magnitude, pathlines, turbulent intensity, and turbulent kinetic energy under different discretization schemes, turbulence models, and rotational speeds of pump. This simulation was based on the volume of fluid multiphase and multiple reference frame models. Spatial discretization scheme had an obvious effect on the velocity distribution in the column and revolving flotation sections, especially in the former. The introduction of a turbulence model changed the velocity distribution, the turbulence state, and the pathlines in the column and revolving flotation sections. Moreover, the standard, renormalization group (RNG), and realizable k‐epsilon turbulence models had numerous differences. Among these models, the RNG and realizable turbulence models had the most similar results. As the rotational speed of pump increased, velocity and turbulence field intensified. The flow field in the column flotation section differed from that in the revolving flotation section. © 2014 Curtin University of Technology and John Wiley & Sons, Ltd.
ISSN:1932-2135
1932-2143
DOI:10.1002/apj.1849