Loading…
Feedback-control operators for improved Pareto-set description: Application to a polymer extrusion process
This paper presents a new class of operators for multiobjective evolutionary algorithms that are inspired on feedback-control techniques. The proposed operators, the archive-set reduction and the surface-filling crossover, have the purpose of enhancing the quality of the description of the Pareto-se...
Saved in:
Published in: | Engineering applications of artificial intelligence 2015-02, Vol.38, p.147-167 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper presents a new class of operators for multiobjective evolutionary algorithms that are inspired on feedback-control techniques. The proposed operators, the archive-set reduction and the surface-filling crossover, have the purpose of enhancing the quality of the description of the Pareto-set in multiobjective optimization problems. They act on the Pareto-estimate sample set, performing operations that eliminate archive points in the most crowded regions, and generate new points in the less populated regions, leading to a dynamic equilibrium that tends to generate a uniform sampling of the efficient solution set. The internal parameters of those operators are coordinated by feedback-control inspired techniques, which ensure that the desired equilibrium is attained. Numerical experiments in some benchmark problems and in a real problem of optimization of a single screw extrusion system for polymer processing show that the proposed methodology is able to generate more detailed descriptions of Pareto-optimal fronts than the ones produced by usual algorithms. |
---|---|
ISSN: | 0952-1976 1873-6769 |
DOI: | 10.1016/j.engappai.2014.10.016 |