Loading…

Adaptive Total Variation Regularization Based SAR Image Despeckling and Despeckling Evaluation Index

We introduce a total variation (TV) regularization model for synthetic aperture radar (SAR) image despeckling. A dual-formulation-based adaptive TV (ATV) regularization method is applied to solve the TV regularization. The parameter adaptation of the TV regularization is performed based on the noise...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on geoscience and remote sensing 2015-05, Vol.53 (5), p.2765-2774
Main Authors: Zhao, Yao, Liu, Jian Guo, Zhang, Bingchen, Hong, Wen, Wu, Yi-Rong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We introduce a total variation (TV) regularization model for synthetic aperture radar (SAR) image despeckling. A dual-formulation-based adaptive TV (ATV) regularization method is applied to solve the TV regularization. The parameter adaptation of the TV regularization is performed based on the noise level estimated via wavelets. The TV-regularization-based image restoration model has a good performance in preserving image sharpness and edges while removing noises, and it is therefore effective for edge preserve SAR image despeckling. Experiments have been carried out using optical images contaminated with artificial speckles first and then SAR images. A despeckling evaluation index (DEI) is designed to assess the effectiveness of edge preserve despeckling on SAR images, which is based on the ratio of the standard deviations of two neighborhood areas of different sizes of a pixel. Experimental results show that the proposed ATV method can effectively suppress SAR image speckles without compromising the edge sharpness of image features according to both subjective visual assessment of image quality and objective evaluation using DEI.
ISSN:0196-2892
1558-0644
DOI:10.1109/TGRS.2014.2364525