Loading…
Evaluation of the hydrology of the IBIS land surface model in a semi‐arid catchment
This paper evaluates the Integrated BIosphere Simulator (IBIS) land surface model using daily soil moisture data over a 3‐year period (2005–2007) at a semi‐arid site in southeastern Australia, the Stanley catchment, using the Monte Carlo generalized likelihood uncertainty estimation (GLUE) approach....
Saved in:
Published in: | Hydrological processes 2015-02, Vol.29 (5), p.653-670 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper evaluates the Integrated BIosphere Simulator (IBIS) land surface model using daily soil moisture data over a 3‐year period (2005–2007) at a semi‐arid site in southeastern Australia, the Stanley catchment, using the Monte Carlo generalized likelihood uncertainty estimation (GLUE) approach. The model was satisfactorily calibrated for both the surface 30 cm and full profile 90 cm. However, full‐profile calibration was not as good as that for the surface, which results from some deficiencies in the evapotranspiration component in IBIS. Relatively small differences in simulated soil moisture were associated with large discrepancies in the predictions of surface runoff, drainage and evapotranspiration. We conclude that while land surface schemes may be effective at simulating heat fluxes, they may be ineffective for prediction of hydrology unless the soil moisture is accurately estimated. Sensitivity analyses indicated that the soil moisture simulations were most sensitive to soil parameters, and the wilting point was the most identifiable parameter. Significant interactions existed between three soils parameters: porosity, saturated hydraulic conductivity and Campbell ‘b’ exponent, so they could not be identified independent of each other. There were no significant differences in parameter sensitivity and interaction for different hydroclimatic years. Even though the data record contained a very dry year and another year with a very large rainfall event, this indicated that the soil model could be calibrated without the data needing to explore the extreme range of dry and wet conditions. IBIS was much less sensitive to vegetation parameters. The leaf area index (LAI) could affect the mean of daily soil moisture time series when LAI 1. IBIS was insensitive to the Jackson rooting parameter, suggesting that the effect of the rooting depth distribution on predictions of hydrology was insignificant. Copyright © 2014 John Wiley & Sons, Ltd. |
---|---|
ISSN: | 0885-6087 1099-1085 |
DOI: | 10.1002/hyp.10156 |