Loading…

How polymer additives reduce the pour point of hydrocarbon solvents containing wax crystals

We have investigated how four different pour point depressant (PPD) polymers affect the pour point transition in mixtures of a single pure wax in a solvent. We used either n-eicosane (C20), CH3(CH2)18CH3, n-tetracosane (C24), CH3(CH2)22CH3 or n-hexatriacontane (C36), CH3(CH2)34CH3 as the wax compone...

Full description

Saved in:
Bibliographic Details
Published in:Physical chemistry chemical physics : PCCP 2015-02, Vol.17 (6), p.4107-4117
Main Authors: Binks, Bernard P, Fletcher, Paul D I, Roberts, Noel A, Dunkerley, John, Greenfield, Hannah, Mastrangelo, Antonio, Trickett, Kieran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c356t-5e1aa7c1c6991b645cee2939557025e2dd59e3930317e313086a4ec8544729d53
cites cdi_FETCH-LOGICAL-c356t-5e1aa7c1c6991b645cee2939557025e2dd59e3930317e313086a4ec8544729d53
container_end_page 4117
container_issue 6
container_start_page 4107
container_title Physical chemistry chemical physics : PCCP
container_volume 17
creator Binks, Bernard P
Fletcher, Paul D I
Roberts, Noel A
Dunkerley, John
Greenfield, Hannah
Mastrangelo, Antonio
Trickett, Kieran
description We have investigated how four different pour point depressant (PPD) polymers affect the pour point transition in mixtures of a single pure wax in a solvent. We used either n-eicosane (C20), CH3(CH2)18CH3, n-tetracosane (C24), CH3(CH2)22CH3 or n-hexatriacontane (C36), CH3(CH2)34CH3 as the wax component with either n-heptane or toluene as the solvent component. For all wax-solvent combinations, the measured variation of wax solubility with temperature is well predicted by ideal solution theory. The variation of pour point temperature as a function of the overall wax concentration is quantitatively modelled using the idea that, for each overall wax concentration, the pour point occurs at a temperature at which a critical volume fraction ϕ* of wax crystals has precipitated. Close to the pour point temperature, extraction and examination of the wax crystals show they consist of polydisperse, irregularly-shaped platelets with axial ratios (h/d, where h is the plate thickness and d is the plate long dimension) in the range 0.005-0.05. It is found that the measured ϕ* values corresponding to the pour point transitions are weakly correlated with the wax crystal axial ratios (h/d) for all wax-solvent-PPD polymer combinations. These results indicate that the pour point transition occurs at a volume fraction larger than the value at which the volumes of rotation of the platelet crystals overlap, i.e., 2.5(h/d) < ϕ* < 11(h/d). PPD polymers work, in part, by increasing the wax crystal axial ratio (h/d), thereby increasing ϕ* and reducing the pour point temperature. Since the PPD's ability to modify the wax crystal shape relies on its adsorption to the crystal-solution surface, it is anticipated and observed experimentally that optimum PPD efficacy is correlated with the difference between the wax and the polymer solubility boundary temperatures. This finding and the mechanistic insight gained here provide the basis for a simple and rapid screening test to identify candidate species likely to be effective PPDs for particular wax systems.
doi_str_mv 10.1039/c4cp04329d
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669857820</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1652425047</sourcerecordid><originalsourceid>FETCH-LOGICAL-c356t-5e1aa7c1c6991b645cee2939557025e2dd59e3930317e313086a4ec8544729d53</originalsourceid><addsrcrecordid>eNqNkE1Lw0AQhhdRbK1e_AGyRxGi-53sUepHBUEPevIQtpupjSTZuLtpzb832tqzl3kH5uGFeRA6peSSEq6vrLAtEZzpYg-NqVA80SQT-7s9VSN0FMIHIYRKyg_RiEmphCDZGL3N3Bq3rupr8NgURRnLFQTsoegs4LiE4dj5YZRNxG6Bl33hnTV-7hocXLWCJgZsXRNN2ZTNO16bL2x9H6KpwjE6WAwBJ9ucoNe725fpLHl8un-YXj8mlksVEwnUmNRSq7SmcyWkBWCaaylTwiSwopAauOaE0xQ45SRTRoDNpBDp8LPkE3S-6W29--wgxLwug4WqMg24LuRUKZ3JNGPkH6hkgkki0gG92KDWuxA8LPLWl7XxfU5J_uM9n4rp86_3mwE-2_Z28xqKHfonmn8DJAZ9Rg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1652425047</pqid></control><display><type>article</type><title>How polymer additives reduce the pour point of hydrocarbon solvents containing wax crystals</title><source>Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)</source><creator>Binks, Bernard P ; Fletcher, Paul D I ; Roberts, Noel A ; Dunkerley, John ; Greenfield, Hannah ; Mastrangelo, Antonio ; Trickett, Kieran</creator><creatorcontrib>Binks, Bernard P ; Fletcher, Paul D I ; Roberts, Noel A ; Dunkerley, John ; Greenfield, Hannah ; Mastrangelo, Antonio ; Trickett, Kieran</creatorcontrib><description>We have investigated how four different pour point depressant (PPD) polymers affect the pour point transition in mixtures of a single pure wax in a solvent. We used either n-eicosane (C20), CH3(CH2)18CH3, n-tetracosane (C24), CH3(CH2)22CH3 or n-hexatriacontane (C36), CH3(CH2)34CH3 as the wax component with either n-heptane or toluene as the solvent component. For all wax-solvent combinations, the measured variation of wax solubility with temperature is well predicted by ideal solution theory. The variation of pour point temperature as a function of the overall wax concentration is quantitatively modelled using the idea that, for each overall wax concentration, the pour point occurs at a temperature at which a critical volume fraction ϕ* of wax crystals has precipitated. Close to the pour point temperature, extraction and examination of the wax crystals show they consist of polydisperse, irregularly-shaped platelets with axial ratios (h/d, where h is the plate thickness and d is the plate long dimension) in the range 0.005-0.05. It is found that the measured ϕ* values corresponding to the pour point transitions are weakly correlated with the wax crystal axial ratios (h/d) for all wax-solvent-PPD polymer combinations. These results indicate that the pour point transition occurs at a volume fraction larger than the value at which the volumes of rotation of the platelet crystals overlap, i.e., 2.5(h/d) &lt; ϕ* &lt; 11(h/d). PPD polymers work, in part, by increasing the wax crystal axial ratio (h/d), thereby increasing ϕ* and reducing the pour point temperature. Since the PPD's ability to modify the wax crystal shape relies on its adsorption to the crystal-solution surface, it is anticipated and observed experimentally that optimum PPD efficacy is correlated with the difference between the wax and the polymer solubility boundary temperatures. This finding and the mechanistic insight gained here provide the basis for a simple and rapid screening test to identify candidate species likely to be effective PPDs for particular wax systems.</description><identifier>ISSN: 1463-9076</identifier><identifier>EISSN: 1463-9084</identifier><identifier>DOI: 10.1039/c4cp04329d</identifier><identifier>PMID: 25564408</identifier><language>eng</language><publisher>England</publisher><subject>Boundaries ; Crystals ; Extraction ; Mathematical models ; Solubility ; Solvents ; Surface chemistry ; Volume fraction</subject><ispartof>Physical chemistry chemical physics : PCCP, 2015-02, Vol.17 (6), p.4107-4117</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c356t-5e1aa7c1c6991b645cee2939557025e2dd59e3930317e313086a4ec8544729d53</citedby><cites>FETCH-LOGICAL-c356t-5e1aa7c1c6991b645cee2939557025e2dd59e3930317e313086a4ec8544729d53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25564408$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Binks, Bernard P</creatorcontrib><creatorcontrib>Fletcher, Paul D I</creatorcontrib><creatorcontrib>Roberts, Noel A</creatorcontrib><creatorcontrib>Dunkerley, John</creatorcontrib><creatorcontrib>Greenfield, Hannah</creatorcontrib><creatorcontrib>Mastrangelo, Antonio</creatorcontrib><creatorcontrib>Trickett, Kieran</creatorcontrib><title>How polymer additives reduce the pour point of hydrocarbon solvents containing wax crystals</title><title>Physical chemistry chemical physics : PCCP</title><addtitle>Phys Chem Chem Phys</addtitle><description>We have investigated how four different pour point depressant (PPD) polymers affect the pour point transition in mixtures of a single pure wax in a solvent. We used either n-eicosane (C20), CH3(CH2)18CH3, n-tetracosane (C24), CH3(CH2)22CH3 or n-hexatriacontane (C36), CH3(CH2)34CH3 as the wax component with either n-heptane or toluene as the solvent component. For all wax-solvent combinations, the measured variation of wax solubility with temperature is well predicted by ideal solution theory. The variation of pour point temperature as a function of the overall wax concentration is quantitatively modelled using the idea that, for each overall wax concentration, the pour point occurs at a temperature at which a critical volume fraction ϕ* of wax crystals has precipitated. Close to the pour point temperature, extraction and examination of the wax crystals show they consist of polydisperse, irregularly-shaped platelets with axial ratios (h/d, where h is the plate thickness and d is the plate long dimension) in the range 0.005-0.05. It is found that the measured ϕ* values corresponding to the pour point transitions are weakly correlated with the wax crystal axial ratios (h/d) for all wax-solvent-PPD polymer combinations. These results indicate that the pour point transition occurs at a volume fraction larger than the value at which the volumes of rotation of the platelet crystals overlap, i.e., 2.5(h/d) &lt; ϕ* &lt; 11(h/d). PPD polymers work, in part, by increasing the wax crystal axial ratio (h/d), thereby increasing ϕ* and reducing the pour point temperature. Since the PPD's ability to modify the wax crystal shape relies on its adsorption to the crystal-solution surface, it is anticipated and observed experimentally that optimum PPD efficacy is correlated with the difference between the wax and the polymer solubility boundary temperatures. This finding and the mechanistic insight gained here provide the basis for a simple and rapid screening test to identify candidate species likely to be effective PPDs for particular wax systems.</description><subject>Boundaries</subject><subject>Crystals</subject><subject>Extraction</subject><subject>Mathematical models</subject><subject>Solubility</subject><subject>Solvents</subject><subject>Surface chemistry</subject><subject>Volume fraction</subject><issn>1463-9076</issn><issn>1463-9084</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqNkE1Lw0AQhhdRbK1e_AGyRxGi-53sUepHBUEPevIQtpupjSTZuLtpzb832tqzl3kH5uGFeRA6peSSEq6vrLAtEZzpYg-NqVA80SQT-7s9VSN0FMIHIYRKyg_RiEmphCDZGL3N3Bq3rupr8NgURRnLFQTsoegs4LiE4dj5YZRNxG6Bl33hnTV-7hocXLWCJgZsXRNN2ZTNO16bL2x9H6KpwjE6WAwBJ9ucoNe725fpLHl8un-YXj8mlksVEwnUmNRSq7SmcyWkBWCaaylTwiSwopAauOaE0xQ45SRTRoDNpBDp8LPkE3S-6W29--wgxLwug4WqMg24LuRUKZ3JNGPkH6hkgkki0gG92KDWuxA8LPLWl7XxfU5J_uM9n4rp86_3mwE-2_Z28xqKHfonmn8DJAZ9Rg</recordid><startdate>20150214</startdate><enddate>20150214</enddate><creator>Binks, Bernard P</creator><creator>Fletcher, Paul D I</creator><creator>Roberts, Noel A</creator><creator>Dunkerley, John</creator><creator>Greenfield, Hannah</creator><creator>Mastrangelo, Antonio</creator><creator>Trickett, Kieran</creator><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20150214</creationdate><title>How polymer additives reduce the pour point of hydrocarbon solvents containing wax crystals</title><author>Binks, Bernard P ; Fletcher, Paul D I ; Roberts, Noel A ; Dunkerley, John ; Greenfield, Hannah ; Mastrangelo, Antonio ; Trickett, Kieran</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c356t-5e1aa7c1c6991b645cee2939557025e2dd59e3930317e313086a4ec8544729d53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundaries</topic><topic>Crystals</topic><topic>Extraction</topic><topic>Mathematical models</topic><topic>Solubility</topic><topic>Solvents</topic><topic>Surface chemistry</topic><topic>Volume fraction</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Binks, Bernard P</creatorcontrib><creatorcontrib>Fletcher, Paul D I</creatorcontrib><creatorcontrib>Roberts, Noel A</creatorcontrib><creatorcontrib>Dunkerley, John</creatorcontrib><creatorcontrib>Greenfield, Hannah</creatorcontrib><creatorcontrib>Mastrangelo, Antonio</creatorcontrib><creatorcontrib>Trickett, Kieran</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Physical chemistry chemical physics : PCCP</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Binks, Bernard P</au><au>Fletcher, Paul D I</au><au>Roberts, Noel A</au><au>Dunkerley, John</au><au>Greenfield, Hannah</au><au>Mastrangelo, Antonio</au><au>Trickett, Kieran</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>How polymer additives reduce the pour point of hydrocarbon solvents containing wax crystals</atitle><jtitle>Physical chemistry chemical physics : PCCP</jtitle><addtitle>Phys Chem Chem Phys</addtitle><date>2015-02-14</date><risdate>2015</risdate><volume>17</volume><issue>6</issue><spage>4107</spage><epage>4117</epage><pages>4107-4117</pages><issn>1463-9076</issn><eissn>1463-9084</eissn><abstract>We have investigated how four different pour point depressant (PPD) polymers affect the pour point transition in mixtures of a single pure wax in a solvent. We used either n-eicosane (C20), CH3(CH2)18CH3, n-tetracosane (C24), CH3(CH2)22CH3 or n-hexatriacontane (C36), CH3(CH2)34CH3 as the wax component with either n-heptane or toluene as the solvent component. For all wax-solvent combinations, the measured variation of wax solubility with temperature is well predicted by ideal solution theory. The variation of pour point temperature as a function of the overall wax concentration is quantitatively modelled using the idea that, for each overall wax concentration, the pour point occurs at a temperature at which a critical volume fraction ϕ* of wax crystals has precipitated. Close to the pour point temperature, extraction and examination of the wax crystals show they consist of polydisperse, irregularly-shaped platelets with axial ratios (h/d, where h is the plate thickness and d is the plate long dimension) in the range 0.005-0.05. It is found that the measured ϕ* values corresponding to the pour point transitions are weakly correlated with the wax crystal axial ratios (h/d) for all wax-solvent-PPD polymer combinations. These results indicate that the pour point transition occurs at a volume fraction larger than the value at which the volumes of rotation of the platelet crystals overlap, i.e., 2.5(h/d) &lt; ϕ* &lt; 11(h/d). PPD polymers work, in part, by increasing the wax crystal axial ratio (h/d), thereby increasing ϕ* and reducing the pour point temperature. Since the PPD's ability to modify the wax crystal shape relies on its adsorption to the crystal-solution surface, it is anticipated and observed experimentally that optimum PPD efficacy is correlated with the difference between the wax and the polymer solubility boundary temperatures. This finding and the mechanistic insight gained here provide the basis for a simple and rapid screening test to identify candidate species likely to be effective PPDs for particular wax systems.</abstract><cop>England</cop><pmid>25564408</pmid><doi>10.1039/c4cp04329d</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1463-9076
ispartof Physical chemistry chemical physics : PCCP, 2015-02, Vol.17 (6), p.4107-4117
issn 1463-9076
1463-9084
language eng
recordid cdi_proquest_miscellaneous_1669857820
source Royal Society of Chemistry:Jisc Collections:Royal Society of Chemistry Read and Publish 2022-2024 (reading list)
subjects Boundaries
Crystals
Extraction
Mathematical models
Solubility
Solvents
Surface chemistry
Volume fraction
title How polymer additives reduce the pour point of hydrocarbon solvents containing wax crystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T08%3A06%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=How%20polymer%20additives%20reduce%20the%20pour%20point%20of%20hydrocarbon%20solvents%20containing%20wax%20crystals&rft.jtitle=Physical%20chemistry%20chemical%20physics%20:%20PCCP&rft.au=Binks,%20Bernard%20P&rft.date=2015-02-14&rft.volume=17&rft.issue=6&rft.spage=4107&rft.epage=4117&rft.pages=4107-4117&rft.issn=1463-9076&rft.eissn=1463-9084&rft_id=info:doi/10.1039/c4cp04329d&rft_dat=%3Cproquest_cross%3E1652425047%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c356t-5e1aa7c1c6991b645cee2939557025e2dd59e3930317e313086a4ec8544729d53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1652425047&rft_id=info:pmid/25564408&rfr_iscdi=true