Loading…
Eigenvalue spectrum of transition matrix of dual Sierpinski gaskets and its applications
The eigenvalue spectrum of the transition matrix of a network contains much information about its structural properties and is related to the behavior of various dynamical processes performed on it. In this paper, we study the eigenvalues of the transition matrix of the dual Sierpinski gaskets embed...
Saved in:
Published in: | Journal of physics. A, Mathematical and theoretical Mathematical and theoretical, 2012-08, Vol.45 (34), p.345101-1-345101-11 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-86344f017dfe6b3069e5cd68592608ea890980faacda63c7ca4c5a62c64d59353 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-86344f017dfe6b3069e5cd68592608ea890980faacda63c7ca4c5a62c64d59353 |
container_end_page | 1-345101-11 |
container_issue | 34 |
container_start_page | 345101 |
container_title | Journal of physics. A, Mathematical and theoretical |
container_volume | 45 |
creator | Wu, Shunqi Zhang, Zhongzhi |
description | The eigenvalue spectrum of the transition matrix of a network contains much information about its structural properties and is related to the behavior of various dynamical processes performed on it. In this paper, we study the eigenvalues of the transition matrix of the dual Sierpinski gaskets embedded in d-dimensional Euclidean spaces. We obtain all the eigenvalues, as well as their corresponding degeneracies, by making use of the spectral decimation technique. We then apply the obtained eigenvalues to determine the exact number of spanning trees in the studied fractals and derive an explicit formula of the eigentime identity for random walks taking place on them. |
doi_str_mv | 10.1088/1751-8113/45/34/345101 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669859085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669859085</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-86344f017dfe6b3069e5cd68592608ea890980faacda63c7ca4c5a62c64d59353</originalsourceid><addsrcrecordid>eNqFkFtLAzEQhYMoWKt_QfIi-LI22VyafZRSL1DwQQXfwpjNlrR7M7Mr-u_dZUtfhYEZknPOMB8h15zdcWbMgi8VTwznYiHVQsihFGf8hMwOHyk_Pc5cnJMLxB1jSrIsnZGPddj6-hvK3lNsvetiX9GmoF2EGkMXmppW0MXwMz7mPZT0NfjYhhr3gW4B975DCnVOw9jbtgwORhdekrMCSvRXhz4n7w_rt9VTsnl5fF7dbxInNO8So4WUBePLvPD6UzCdeeVybVSWamY8mIxlhhUALgct3NKBdAp06rTMVSaUmJPbKbeNzVfvsbNVQOfLEmrf9Gi51tmQxswo1ZPUxQYx-sK2MVQQfy1ndkRpR0p2pGSlskLaCeVgvDnsAHRQFgMbF_DoTocblJDZoEsnXWhau2v6WA-X_xf-B6dxg0M</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669859085</pqid></control><display><type>article</type><title>Eigenvalue spectrum of transition matrix of dual Sierpinski gaskets and its applications</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Wu, Shunqi ; Zhang, Zhongzhi</creator><creatorcontrib>Wu, Shunqi ; Zhang, Zhongzhi</creatorcontrib><description>The eigenvalue spectrum of the transition matrix of a network contains much information about its structural properties and is related to the behavior of various dynamical processes performed on it. In this paper, we study the eigenvalues of the transition matrix of the dual Sierpinski gaskets embedded in d-dimensional Euclidean spaces. We obtain all the eigenvalues, as well as their corresponding degeneracies, by making use of the spectral decimation technique. We then apply the obtained eigenvalues to determine the exact number of spanning trees in the studied fractals and derive an explicit formula of the eigentime identity for random walks taking place on them.</description><identifier>ISSN: 1751-8113</identifier><identifier>EISSN: 1751-8121</identifier><identifier>DOI: 10.1088/1751-8113/45/34/345101</identifier><identifier>CODEN: JPHAC5</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Eigenvalues ; Exact sciences and technology ; Fractal analysis ; Fractals ; Gaskets ; Graph theory ; Mathematical analysis ; Networks ; Physics ; Random walk ; Spectra</subject><ispartof>Journal of physics. A, Mathematical and theoretical, 2012-08, Vol.45 (34), p.345101-1-345101-11</ispartof><rights>2012 IOP Publishing Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-86344f017dfe6b3069e5cd68592608ea890980faacda63c7ca4c5a62c64d59353</citedby><cites>FETCH-LOGICAL-c361t-86344f017dfe6b3069e5cd68592608ea890980faacda63c7ca4c5a62c64d59353</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=26345349$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Shunqi</creatorcontrib><creatorcontrib>Zhang, Zhongzhi</creatorcontrib><title>Eigenvalue spectrum of transition matrix of dual Sierpinski gaskets and its applications</title><title>Journal of physics. A, Mathematical and theoretical</title><addtitle>JPhysA</addtitle><addtitle>J. Phys. A: Math. Theor</addtitle><description>The eigenvalue spectrum of the transition matrix of a network contains much information about its structural properties and is related to the behavior of various dynamical processes performed on it. In this paper, we study the eigenvalues of the transition matrix of the dual Sierpinski gaskets embedded in d-dimensional Euclidean spaces. We obtain all the eigenvalues, as well as their corresponding degeneracies, by making use of the spectral decimation technique. We then apply the obtained eigenvalues to determine the exact number of spanning trees in the studied fractals and derive an explicit formula of the eigentime identity for random walks taking place on them.</description><subject>Eigenvalues</subject><subject>Exact sciences and technology</subject><subject>Fractal analysis</subject><subject>Fractals</subject><subject>Gaskets</subject><subject>Graph theory</subject><subject>Mathematical analysis</subject><subject>Networks</subject><subject>Physics</subject><subject>Random walk</subject><subject>Spectra</subject><issn>1751-8113</issn><issn>1751-8121</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><recordid>eNqFkFtLAzEQhYMoWKt_QfIi-LI22VyafZRSL1DwQQXfwpjNlrR7M7Mr-u_dZUtfhYEZknPOMB8h15zdcWbMgi8VTwznYiHVQsihFGf8hMwOHyk_Pc5cnJMLxB1jSrIsnZGPddj6-hvK3lNsvetiX9GmoF2EGkMXmppW0MXwMz7mPZT0NfjYhhr3gW4B975DCnVOw9jbtgwORhdekrMCSvRXhz4n7w_rt9VTsnl5fF7dbxInNO8So4WUBePLvPD6UzCdeeVybVSWamY8mIxlhhUALgct3NKBdAp06rTMVSaUmJPbKbeNzVfvsbNVQOfLEmrf9Gi51tmQxswo1ZPUxQYx-sK2MVQQfy1ndkRpR0p2pGSlskLaCeVgvDnsAHRQFgMbF_DoTocblJDZoEsnXWhau2v6WA-X_xf-B6dxg0M</recordid><startdate>20120831</startdate><enddate>20120831</enddate><creator>Wu, Shunqi</creator><creator>Zhang, Zhongzhi</creator><general>IOP Publishing</general><general>IOP</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope></search><sort><creationdate>20120831</creationdate><title>Eigenvalue spectrum of transition matrix of dual Sierpinski gaskets and its applications</title><author>Wu, Shunqi ; Zhang, Zhongzhi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-86344f017dfe6b3069e5cd68592608ea890980faacda63c7ca4c5a62c64d59353</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Eigenvalues</topic><topic>Exact sciences and technology</topic><topic>Fractal analysis</topic><topic>Fractals</topic><topic>Gaskets</topic><topic>Graph theory</topic><topic>Mathematical analysis</topic><topic>Networks</topic><topic>Physics</topic><topic>Random walk</topic><topic>Spectra</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Shunqi</creatorcontrib><creatorcontrib>Zhang, Zhongzhi</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Shunqi</au><au>Zhang, Zhongzhi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Eigenvalue spectrum of transition matrix of dual Sierpinski gaskets and its applications</atitle><jtitle>Journal of physics. A, Mathematical and theoretical</jtitle><stitle>JPhysA</stitle><addtitle>J. Phys. A: Math. Theor</addtitle><date>2012-08-31</date><risdate>2012</risdate><volume>45</volume><issue>34</issue><spage>345101</spage><epage>1-345101-11</epage><pages>345101-1-345101-11</pages><issn>1751-8113</issn><eissn>1751-8121</eissn><coden>JPHAC5</coden><abstract>The eigenvalue spectrum of the transition matrix of a network contains much information about its structural properties and is related to the behavior of various dynamical processes performed on it. In this paper, we study the eigenvalues of the transition matrix of the dual Sierpinski gaskets embedded in d-dimensional Euclidean spaces. We obtain all the eigenvalues, as well as their corresponding degeneracies, by making use of the spectral decimation technique. We then apply the obtained eigenvalues to determine the exact number of spanning trees in the studied fractals and derive an explicit formula of the eigentime identity for random walks taking place on them.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1751-8113/45/34/345101</doi><tpages>11</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1751-8113 |
ispartof | Journal of physics. A, Mathematical and theoretical, 2012-08, Vol.45 (34), p.345101-1-345101-11 |
issn | 1751-8113 1751-8121 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669859085 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Eigenvalues Exact sciences and technology Fractal analysis Fractals Gaskets Graph theory Mathematical analysis Networks Physics Random walk Spectra |
title | Eigenvalue spectrum of transition matrix of dual Sierpinski gaskets and its applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T06%3A58%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Eigenvalue%20spectrum%20of%20transition%20matrix%20of%20dual%20Sierpinski%20gaskets%20and%20its%20applications&rft.jtitle=Journal%20of%20physics.%20A,%20Mathematical%20and%20theoretical&rft.au=Wu,%20Shunqi&rft.date=2012-08-31&rft.volume=45&rft.issue=34&rft.spage=345101&rft.epage=1-345101-11&rft.pages=345101-1-345101-11&rft.issn=1751-8113&rft.eissn=1751-8121&rft.coden=JPHAC5&rft_id=info:doi/10.1088/1751-8113/45/34/345101&rft_dat=%3Cproquest_cross%3E1669859085%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-86344f017dfe6b3069e5cd68592608ea890980faacda63c7ca4c5a62c64d59353%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1669859085&rft_id=info:pmid/&rfr_iscdi=true |