Loading…
Nanomaterial-Enabled Stretchable Conductors: Strategies, Materials and Devices
Stretchable electronics are attracting intensive attention due to their promising applications in many areas where electronic devices undergo large deformation and/or form intimate contact with curvilinear surfaces. On the other hand, a plethora of nanomaterials with outstanding properties have emer...
Saved in:
Published in: | Advanced materials (Weinheim) 2015-03, Vol.27 (9), p.1480-1511 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Stretchable electronics are attracting intensive attention due to their promising applications in many areas where electronic devices undergo large deformation and/or form intimate contact with curvilinear surfaces. On the other hand, a plethora of nanomaterials with outstanding properties have emerged over the past decades. The understanding of nanoscale phenomena, materials, and devices has progressed to a point where substantial strides in nanomaterial‐enabled applications become realistic. This review summarizes recent advances in one such application, nanomaterial‐enabled stretchable conductors (one of the most important components for stretchable electronics) and related stretchable devices (e.g., capacitive sensors, supercapacitors and electroactive polymer actuators), over the past five years. Focusing on bottom‐up synthesized carbon nanomaterials (e.g., carbon nanotubes and graphene) and metal nanomaterials (e.g., metal nanowires and nanoparticles), this review provides fundamental insights into the strategies for developing nanomaterial‐enabled highly conductive and stretchable conductors. Finally, some of the challenges and important directions in the area of nanomaterial‐enabled stretchable conductors and devices are discussed.
Recent progress with regard to nanomaterial‐enabled stretchable conductors and related stretchable devices is reviewed (e.g., capacitive sensors, supercapacitors and electroactive polymer actuators). Focusing on carbon nanomaterials (e.g., carbon nanotubes and graphene) and metal nanomaterials (e.g., metal nanowires and nanoparticles), this review provides fundamental insights into the strategies for developing nanomaterial‐enabled highly conductive and stretchable conductors. |
---|---|
ISSN: | 0935-9648 1521-4095 |
DOI: | 10.1002/adma.201404446 |