Loading…

Integration of functional materials and surface modification for polymeric microfluidic systems

The opportunity for the commercialization of microfluidic systems has surged over the recent decade, primarily for medical and the life science applications. This positive development has been spurred by an increasing number of integrated, highly functional lab-on-a-chip technologies from the resear...

Full description

Saved in:
Bibliographic Details
Published in:Journal of micromechanics and microengineering 2013-03, Vol.23 (3), p.33001-19
Main Authors: Kitsara, Maria, Ducrée, Jens
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The opportunity for the commercialization of microfluidic systems has surged over the recent decade, primarily for medical and the life science applications. This positive development has been spurred by an increasing number of integrated, highly functional lab-on-a-chip technologies from the research community. Toward commercialization, there is a dire need for economic manufacture which involves optimized cost for materials and structuring on the front-end as well as for a range of back-end processing steps such as surface modification, integration of functional elements, assembly and packaging. Front-end processing can readily resort to very well established polymer mass fabrication schemes, e.g. injection molding. Also assembly and packaging can often be adopted from commercially available processes. In this review, we survey the back-end processes of hybrid material integration and surface modification which often need to be tailored to the specifics of miniaturized polymeric microfluidic systems. On the one hand, the accurate control of these back-end processes proves to be the key to the technical function of the system and thus the value creation. On the other hand, the integration of functional materials constitutes a major cost factor.
ISSN:0960-1317
1361-6439
DOI:10.1088/0960-1317/23/3/033001