Loading…

KdV Equation and Computations of Solitons: Nonlinear Error Dynamics

Here we have developed new compact and hybrid schemes for the solution of KdV equation. These schemes for the third derivative have been analyzed in the spectral plane for their resolution and compared with another scheme in the literature. Furthermore the developed schemes have been used to solve a...

Full description

Saved in:
Bibliographic Details
Published in:Journal of scientific computing 2015-03, Vol.62 (3), p.693-717
Main Authors: Ashwin, V. M., Saurabh, K., Sriramkrishnan, M., Bagade, P. M., Parvathi, M. K., Sengupta, Tapan K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-32f8fe1311130c8e3e070a89e721d911082602ad3fe8086d12b3824e7ec66b8a3
cites cdi_FETCH-LOGICAL-c382t-32f8fe1311130c8e3e070a89e721d911082602ad3fe8086d12b3824e7ec66b8a3
container_end_page 717
container_issue 3
container_start_page 693
container_title Journal of scientific computing
container_volume 62
creator Ashwin, V. M.
Saurabh, K.
Sriramkrishnan, M.
Bagade, P. M.
Parvathi, M. K.
Sengupta, Tapan K.
description Here we have developed new compact and hybrid schemes for the solution of KdV equation. These schemes for the third derivative have been analyzed in the spectral plane for their resolution and compared with another scheme in the literature. Furthermore the developed schemes have been used to solve a model linear dispersion equation. The error dynamics equation has been developed for this model equation. Despite the linearity of the model equation, one can draw conclusions for error dynamics of nonlinear differential equations. The developed compact scheme has been found to be quite accurate in solving KdV equation. One- and two-soliton cases have been reported to demonstrate the above.
doi_str_mv 10.1007/s10915-014-9875-4
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669863250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918312354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-32f8fe1311130c8e3e070a89e721d911082602ad3fe8086d12b3824e7ec66b8a3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8FL16iM0nbJN6krh-46MGPa8i2qXRpkzVpD_vv7VpBEDzNDDzvy_AQcopwgQDiMiIozChgSpUUGU33yAwzwanIFe6TGUiZUZGK9JAcxbgGACUVm5HisXpPFp-D6RvvEuOqpPDdZui_75j4OnnxbdOP-1Xy5F3bOGtCsgjBh-Rm60zXlPGYHNSmjfbkZ87J2-3itbiny-e7h-J6SUsuWU85q2VtkSMih1JabkGAkcoKhpVCBMlyYKbitZUg8wrZasylVtgyz1fS8Dk5n3o3wX8ONva6a2Jp29Y464eoMc-VzDnLYETP_qBrPwQ3fqeZQsmR8SwdKZyoMvgYg631JjSdCVuNoHda9aRVj1r1TqveZdiUiSPrPmz4bf4_9AX7NXhK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918312354</pqid></control><display><type>article</type><title>KdV Equation and Computations of Solitons: Nonlinear Error Dynamics</title><source>Springer Nature</source><creator>Ashwin, V. M. ; Saurabh, K. ; Sriramkrishnan, M. ; Bagade, P. M. ; Parvathi, M. K. ; Sengupta, Tapan K.</creator><creatorcontrib>Ashwin, V. M. ; Saurabh, K. ; Sriramkrishnan, M. ; Bagade, P. M. ; Parvathi, M. K. ; Sengupta, Tapan K.</creatorcontrib><description>Here we have developed new compact and hybrid schemes for the solution of KdV equation. These schemes for the third derivative have been analyzed in the spectral plane for their resolution and compared with another scheme in the literature. Furthermore the developed schemes have been used to solve a model linear dispersion equation. The error dynamics equation has been developed for this model equation. Despite the linearity of the model equation, one can draw conclusions for error dynamics of nonlinear differential equations. The developed compact scheme has been found to be quite accurate in solving KdV equation. One- and two-soliton cases have been reported to demonstrate the above.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-014-9875-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Computation ; Computational Mathematics and Numerical Analysis ; Derivatives ; Differential equations ; Errors ; Fourier transforms ; Linearity ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Methods ; Nonlinear differential equations ; Nonlinear dynamics ; Nonlinear equations ; Nonlinearity ; Numerical analysis ; Simulation ; Solitary waves ; Spectra ; Theoretical</subject><ispartof>Journal of scientific computing, 2015-03, Vol.62 (3), p.693-717</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-32f8fe1311130c8e3e070a89e721d911082602ad3fe8086d12b3824e7ec66b8a3</citedby><cites>FETCH-LOGICAL-c382t-32f8fe1311130c8e3e070a89e721d911082602ad3fe8086d12b3824e7ec66b8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ashwin, V. M.</creatorcontrib><creatorcontrib>Saurabh, K.</creatorcontrib><creatorcontrib>Sriramkrishnan, M.</creatorcontrib><creatorcontrib>Bagade, P. M.</creatorcontrib><creatorcontrib>Parvathi, M. K.</creatorcontrib><creatorcontrib>Sengupta, Tapan K.</creatorcontrib><title>KdV Equation and Computations of Solitons: Nonlinear Error Dynamics</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>Here we have developed new compact and hybrid schemes for the solution of KdV equation. These schemes for the third derivative have been analyzed in the spectral plane for their resolution and compared with another scheme in the literature. Furthermore the developed schemes have been used to solve a model linear dispersion equation. The error dynamics equation has been developed for this model equation. Despite the linearity of the model equation, one can draw conclusions for error dynamics of nonlinear differential equations. The developed compact scheme has been found to be quite accurate in solving KdV equation. One- and two-soliton cases have been reported to demonstrate the above.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>Errors</subject><subject>Fourier transforms</subject><subject>Linearity</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Numerical analysis</subject><subject>Simulation</subject><subject>Solitary waves</subject><subject>Spectra</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8FL16iM0nbJN6krh-46MGPa8i2qXRpkzVpD_vv7VpBEDzNDDzvy_AQcopwgQDiMiIozChgSpUUGU33yAwzwanIFe6TGUiZUZGK9JAcxbgGACUVm5HisXpPFp-D6RvvEuOqpPDdZui_75j4OnnxbdOP-1Xy5F3bOGtCsgjBh-Rm60zXlPGYHNSmjfbkZ87J2-3itbiny-e7h-J6SUsuWU85q2VtkSMih1JabkGAkcoKhpVCBMlyYKbitZUg8wrZasylVtgyz1fS8Dk5n3o3wX8ONva6a2Jp29Y464eoMc-VzDnLYETP_qBrPwQ3fqeZQsmR8SwdKZyoMvgYg631JjSdCVuNoHda9aRVj1r1TqveZdiUiSPrPmz4bf4_9AX7NXhK</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Ashwin, V. M.</creator><creator>Saurabh, K.</creator><creator>Sriramkrishnan, M.</creator><creator>Bagade, P. M.</creator><creator>Parvathi, M. K.</creator><creator>Sengupta, Tapan K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150301</creationdate><title>KdV Equation and Computations of Solitons: Nonlinear Error Dynamics</title><author>Ashwin, V. M. ; Saurabh, K. ; Sriramkrishnan, M. ; Bagade, P. M. ; Parvathi, M. K. ; Sengupta, Tapan K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-32f8fe1311130c8e3e070a89e721d911082602ad3fe8086d12b3824e7ec66b8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>Errors</topic><topic>Fourier transforms</topic><topic>Linearity</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Numerical analysis</topic><topic>Simulation</topic><topic>Solitary waves</topic><topic>Spectra</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashwin, V. M.</creatorcontrib><creatorcontrib>Saurabh, K.</creatorcontrib><creatorcontrib>Sriramkrishnan, M.</creatorcontrib><creatorcontrib>Bagade, P. M.</creatorcontrib><creatorcontrib>Parvathi, M. K.</creatorcontrib><creatorcontrib>Sengupta, Tapan K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashwin, V. M.</au><au>Saurabh, K.</au><au>Sriramkrishnan, M.</au><au>Bagade, P. M.</au><au>Parvathi, M. K.</au><au>Sengupta, Tapan K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KdV Equation and Computations of Solitons: Nonlinear Error Dynamics</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2015-03-01</date><risdate>2015</risdate><volume>62</volume><issue>3</issue><spage>693</spage><epage>717</epage><pages>693-717</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>Here we have developed new compact and hybrid schemes for the solution of KdV equation. These schemes for the third derivative have been analyzed in the spectral plane for their resolution and compared with another scheme in the literature. Furthermore the developed schemes have been used to solve a model linear dispersion equation. The error dynamics equation has been developed for this model equation. Despite the linearity of the model equation, one can draw conclusions for error dynamics of nonlinear differential equations. The developed compact scheme has been found to be quite accurate in solving KdV equation. One- and two-soliton cases have been reported to demonstrate the above.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10915-014-9875-4</doi><tpages>25</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-7474
ispartof Journal of scientific computing, 2015-03, Vol.62 (3), p.693-717
issn 0885-7474
1573-7691
language eng
recordid cdi_proquest_miscellaneous_1669863250
source Springer Nature
subjects Algorithms
Computation
Computational Mathematics and Numerical Analysis
Derivatives
Differential equations
Errors
Fourier transforms
Linearity
Mathematical analysis
Mathematical and Computational Engineering
Mathematical and Computational Physics
Mathematical models
Mathematics
Mathematics and Statistics
Methods
Nonlinear differential equations
Nonlinear dynamics
Nonlinear equations
Nonlinearity
Numerical analysis
Simulation
Solitary waves
Spectra
Theoretical
title KdV Equation and Computations of Solitons: Nonlinear Error Dynamics
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A45%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KdV%20Equation%20and%20Computations%20of%20Solitons:%20Nonlinear%20Error%20Dynamics&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Ashwin,%20V.%20M.&rft.date=2015-03-01&rft.volume=62&rft.issue=3&rft.spage=693&rft.epage=717&rft.pages=693-717&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-014-9875-4&rft_dat=%3Cproquest_cross%3E2918312354%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-32f8fe1311130c8e3e070a89e721d911082602ad3fe8086d12b3824e7ec66b8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918312354&rft_id=info:pmid/&rfr_iscdi=true