Loading…
KdV Equation and Computations of Solitons: Nonlinear Error Dynamics
Here we have developed new compact and hybrid schemes for the solution of KdV equation. These schemes for the third derivative have been analyzed in the spectral plane for their resolution and compared with another scheme in the literature. Furthermore the developed schemes have been used to solve a...
Saved in:
Published in: | Journal of scientific computing 2015-03, Vol.62 (3), p.693-717 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-32f8fe1311130c8e3e070a89e721d911082602ad3fe8086d12b3824e7ec66b8a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-32f8fe1311130c8e3e070a89e721d911082602ad3fe8086d12b3824e7ec66b8a3 |
container_end_page | 717 |
container_issue | 3 |
container_start_page | 693 |
container_title | Journal of scientific computing |
container_volume | 62 |
creator | Ashwin, V. M. Saurabh, K. Sriramkrishnan, M. Bagade, P. M. Parvathi, M. K. Sengupta, Tapan K. |
description | Here we have developed new compact and hybrid schemes for the solution of KdV equation. These schemes for the third derivative have been analyzed in the spectral plane for their resolution and compared with another scheme in the literature. Furthermore the developed schemes have been used to solve a model linear dispersion equation. The error dynamics equation has been developed for this model equation. Despite the linearity of the model equation, one can draw conclusions for error dynamics of nonlinear differential equations. The developed compact scheme has been found to be quite accurate in solving KdV equation. One- and two-soliton cases have been reported to demonstrate the above. |
doi_str_mv | 10.1007/s10915-014-9875-4 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669863250</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>2918312354</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-32f8fe1311130c8e3e070a89e721d911082602ad3fe8086d12b3824e7ec66b8a3</originalsourceid><addsrcrecordid>eNp1kE1LxDAQhoMouK7-AG8FL16iM0nbJN6krh-46MGPa8i2qXRpkzVpD_vv7VpBEDzNDDzvy_AQcopwgQDiMiIozChgSpUUGU33yAwzwanIFe6TGUiZUZGK9JAcxbgGACUVm5HisXpPFp-D6RvvEuOqpPDdZui_75j4OnnxbdOP-1Xy5F3bOGtCsgjBh-Rm60zXlPGYHNSmjfbkZ87J2-3itbiny-e7h-J6SUsuWU85q2VtkSMih1JabkGAkcoKhpVCBMlyYKbitZUg8wrZasylVtgyz1fS8Dk5n3o3wX8ONva6a2Jp29Y464eoMc-VzDnLYETP_qBrPwQ3fqeZQsmR8SwdKZyoMvgYg631JjSdCVuNoHda9aRVj1r1TqveZdiUiSPrPmz4bf4_9AX7NXhK</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2918312354</pqid></control><display><type>article</type><title>KdV Equation and Computations of Solitons: Nonlinear Error Dynamics</title><source>Springer Nature</source><creator>Ashwin, V. M. ; Saurabh, K. ; Sriramkrishnan, M. ; Bagade, P. M. ; Parvathi, M. K. ; Sengupta, Tapan K.</creator><creatorcontrib>Ashwin, V. M. ; Saurabh, K. ; Sriramkrishnan, M. ; Bagade, P. M. ; Parvathi, M. K. ; Sengupta, Tapan K.</creatorcontrib><description>Here we have developed new compact and hybrid schemes for the solution of KdV equation. These schemes for the third derivative have been analyzed in the spectral plane for their resolution and compared with another scheme in the literature. Furthermore the developed schemes have been used to solve a model linear dispersion equation. The error dynamics equation has been developed for this model equation. Despite the linearity of the model equation, one can draw conclusions for error dynamics of nonlinear differential equations. The developed compact scheme has been found to be quite accurate in solving KdV equation. One- and two-soliton cases have been reported to demonstrate the above.</description><identifier>ISSN: 0885-7474</identifier><identifier>EISSN: 1573-7691</identifier><identifier>DOI: 10.1007/s10915-014-9875-4</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Algorithms ; Computation ; Computational Mathematics and Numerical Analysis ; Derivatives ; Differential equations ; Errors ; Fourier transforms ; Linearity ; Mathematical analysis ; Mathematical and Computational Engineering ; Mathematical and Computational Physics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Methods ; Nonlinear differential equations ; Nonlinear dynamics ; Nonlinear equations ; Nonlinearity ; Numerical analysis ; Simulation ; Solitary waves ; Spectra ; Theoretical</subject><ispartof>Journal of scientific computing, 2015-03, Vol.62 (3), p.693-717</ispartof><rights>Springer Science+Business Media New York 2014</rights><rights>Springer Science+Business Media New York 2014.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-32f8fe1311130c8e3e070a89e721d911082602ad3fe8086d12b3824e7ec66b8a3</citedby><cites>FETCH-LOGICAL-c382t-32f8fe1311130c8e3e070a89e721d911082602ad3fe8086d12b3824e7ec66b8a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids></links><search><creatorcontrib>Ashwin, V. M.</creatorcontrib><creatorcontrib>Saurabh, K.</creatorcontrib><creatorcontrib>Sriramkrishnan, M.</creatorcontrib><creatorcontrib>Bagade, P. M.</creatorcontrib><creatorcontrib>Parvathi, M. K.</creatorcontrib><creatorcontrib>Sengupta, Tapan K.</creatorcontrib><title>KdV Equation and Computations of Solitons: Nonlinear Error Dynamics</title><title>Journal of scientific computing</title><addtitle>J Sci Comput</addtitle><description>Here we have developed new compact and hybrid schemes for the solution of KdV equation. These schemes for the third derivative have been analyzed in the spectral plane for their resolution and compared with another scheme in the literature. Furthermore the developed schemes have been used to solve a model linear dispersion equation. The error dynamics equation has been developed for this model equation. Despite the linearity of the model equation, one can draw conclusions for error dynamics of nonlinear differential equations. The developed compact scheme has been found to be quite accurate in solving KdV equation. One- and two-soliton cases have been reported to demonstrate the above.</description><subject>Algorithms</subject><subject>Computation</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>Errors</subject><subject>Fourier transforms</subject><subject>Linearity</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Engineering</subject><subject>Mathematical and Computational Physics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Methods</subject><subject>Nonlinear differential equations</subject><subject>Nonlinear dynamics</subject><subject>Nonlinear equations</subject><subject>Nonlinearity</subject><subject>Numerical analysis</subject><subject>Simulation</subject><subject>Solitary waves</subject><subject>Spectra</subject><subject>Theoretical</subject><issn>0885-7474</issn><issn>1573-7691</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kE1LxDAQhoMouK7-AG8FL16iM0nbJN6krh-46MGPa8i2qXRpkzVpD_vv7VpBEDzNDDzvy_AQcopwgQDiMiIozChgSpUUGU33yAwzwanIFe6TGUiZUZGK9JAcxbgGACUVm5HisXpPFp-D6RvvEuOqpPDdZui_75j4OnnxbdOP-1Xy5F3bOGtCsgjBh-Rm60zXlPGYHNSmjfbkZ87J2-3itbiny-e7h-J6SUsuWU85q2VtkSMih1JabkGAkcoKhpVCBMlyYKbitZUg8wrZasylVtgyz1fS8Dk5n3o3wX8ONva6a2Jp29Y464eoMc-VzDnLYETP_qBrPwQ3fqeZQsmR8SwdKZyoMvgYg631JjSdCVuNoHda9aRVj1r1TqveZdiUiSPrPmz4bf4_9AX7NXhK</recordid><startdate>20150301</startdate><enddate>20150301</enddate><creator>Ashwin, V. M.</creator><creator>Saurabh, K.</creator><creator>Sriramkrishnan, M.</creator><creator>Bagade, P. M.</creator><creator>Parvathi, M. K.</creator><creator>Sengupta, Tapan K.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7SC</scope><scope>8FD</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150301</creationdate><title>KdV Equation and Computations of Solitons: Nonlinear Error Dynamics</title><author>Ashwin, V. M. ; Saurabh, K. ; Sriramkrishnan, M. ; Bagade, P. M. ; Parvathi, M. K. ; Sengupta, Tapan K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-32f8fe1311130c8e3e070a89e721d911082602ad3fe8086d12b3824e7ec66b8a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Algorithms</topic><topic>Computation</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>Errors</topic><topic>Fourier transforms</topic><topic>Linearity</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Engineering</topic><topic>Mathematical and Computational Physics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Methods</topic><topic>Nonlinear differential equations</topic><topic>Nonlinear dynamics</topic><topic>Nonlinear equations</topic><topic>Nonlinearity</topic><topic>Numerical analysis</topic><topic>Simulation</topic><topic>Solitary waves</topic><topic>Spectra</topic><topic>Theoretical</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ashwin, V. M.</creatorcontrib><creatorcontrib>Saurabh, K.</creatorcontrib><creatorcontrib>Sriramkrishnan, M.</creatorcontrib><creatorcontrib>Bagade, P. M.</creatorcontrib><creatorcontrib>Parvathi, M. K.</creatorcontrib><creatorcontrib>Sengupta, Tapan K.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of scientific computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ashwin, V. M.</au><au>Saurabh, K.</au><au>Sriramkrishnan, M.</au><au>Bagade, P. M.</au><au>Parvathi, M. K.</au><au>Sengupta, Tapan K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>KdV Equation and Computations of Solitons: Nonlinear Error Dynamics</atitle><jtitle>Journal of scientific computing</jtitle><stitle>J Sci Comput</stitle><date>2015-03-01</date><risdate>2015</risdate><volume>62</volume><issue>3</issue><spage>693</spage><epage>717</epage><pages>693-717</pages><issn>0885-7474</issn><eissn>1573-7691</eissn><abstract>Here we have developed new compact and hybrid schemes for the solution of KdV equation. These schemes for the third derivative have been analyzed in the spectral plane for their resolution and compared with another scheme in the literature. Furthermore the developed schemes have been used to solve a model linear dispersion equation. The error dynamics equation has been developed for this model equation. Despite the linearity of the model equation, one can draw conclusions for error dynamics of nonlinear differential equations. The developed compact scheme has been found to be quite accurate in solving KdV equation. One- and two-soliton cases have been reported to demonstrate the above.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10915-014-9875-4</doi><tpages>25</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-7474 |
ispartof | Journal of scientific computing, 2015-03, Vol.62 (3), p.693-717 |
issn | 0885-7474 1573-7691 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669863250 |
source | Springer Nature |
subjects | Algorithms Computation Computational Mathematics and Numerical Analysis Derivatives Differential equations Errors Fourier transforms Linearity Mathematical analysis Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical models Mathematics Mathematics and Statistics Methods Nonlinear differential equations Nonlinear dynamics Nonlinear equations Nonlinearity Numerical analysis Simulation Solitary waves Spectra Theoretical |
title | KdV Equation and Computations of Solitons: Nonlinear Error Dynamics |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T06%3A45%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=KdV%20Equation%20and%20Computations%20of%20Solitons:%20Nonlinear%20Error%20Dynamics&rft.jtitle=Journal%20of%20scientific%20computing&rft.au=Ashwin,%20V.%20M.&rft.date=2015-03-01&rft.volume=62&rft.issue=3&rft.spage=693&rft.epage=717&rft.pages=693-717&rft.issn=0885-7474&rft.eissn=1573-7691&rft_id=info:doi/10.1007/s10915-014-9875-4&rft_dat=%3Cproquest_cross%3E2918312354%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-32f8fe1311130c8e3e070a89e721d911082602ad3fe8086d12b3824e7ec66b8a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2918312354&rft_id=info:pmid/&rfr_iscdi=true |