Loading…

The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud

CO, 13CO, and C18O J = 3–2 observations are presented of the Ophiuchus molecular cloud. The 13CO and C18O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F, and J regions. The optically thin(ner) C18O line is used as a column density tracer, from which the gravitational binding e...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2015-02, Vol.447 (2), p.1996-2020
Main Authors: White, Glenn J., Drabek-Maunder, Emily, Rosolowsky, Erik, Ward-Thompson, Derek, Davis, C. J., Gregson, Jon, Hatchell, Jenny, Etxaluze, Mireya, Stickler, Sarah, Buckle, Jane, Johnstone, Doug, Friesen, Rachel, Sadavoy, Sarah, Natt, Kieran. V., Currie, Malcolm, Richer, J. S., Pattle, Kate, Spaans, Marco, Francesco, James Di, Hogerheijde, M. R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c469t-902052560bd960e907929e3b7c079da731ebe5a47c4051b2c49e953bef31745d3
cites cdi_FETCH-LOGICAL-c469t-902052560bd960e907929e3b7c079da731ebe5a47c4051b2c49e953bef31745d3
container_end_page 2020
container_issue 2
container_start_page 1996
container_title Monthly notices of the Royal Astronomical Society
container_volume 447
creator White, Glenn J.
Drabek-Maunder, Emily
Rosolowsky, Erik
Ward-Thompson, Derek
Davis, C. J.
Gregson, Jon
Hatchell, Jenny
Etxaluze, Mireya
Stickler, Sarah
Buckle, Jane
Johnstone, Doug
Friesen, Rachel
Sadavoy, Sarah
Natt, Kieran. V.
Currie, Malcolm
Richer, J. S.
Pattle, Kate
Spaans, Marco
Francesco, James Di
Hogerheijde, M. R.
description CO, 13CO, and C18O J = 3–2 observations are presented of the Ophiuchus molecular cloud. The 13CO and C18O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F, and J regions. The optically thin(ner) C18O line is used as a column density tracer, from which the gravitational binding energy is estimated to be 4.5 × 1039 J (2282 M⊙ km2 s−2). The turbulent kinetic energy is 6.3 × 1038 J (320 M⊙ km2 s−2), or seven times less than this, and therefore the Oph cloud as a whole is gravitationally bound. 30 protostars were searched for high-velocity gas, with 8 showing outflows, and 20 more having evidence of high-velocity gas along their lines of sight. The total outflow kinetic energy is 1.3 × 1038 J (67 M⊙ km2 s−2), corresponding to 21 per cent of the cloud's turbulent kinetic energy. Although turbulent injection by outflows is significant, but does not appear to be the dominant source of turbulence in the cloud. 105 dense molecular clumplets were identified, which had radii ∼0.01–0.05 pc, virial masses ∼0.1–12 M⊙, luminosities ∼0.001–0.1 K km s−1 pc−2, and excitation temperatures ∼10–50 K. These are consistent with the standard Giant Molecular Cloud (GMC) based size–linewidth relationships, showing that the scaling laws extend down to size scales of hundredths of a parsec, and to subsolar-mass condensations. There is however no compelling evidence that the majority of clumplets are undergoing free-fall collapse, nor that they are pressure confined.
doi_str_mv 10.1093/mnras/stu2323
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669863276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stu2323</oup_id><sourcerecordid>1660396501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-902052560bd960e907929e3b7c079da731ebe5a47c4051b2c49e953bef31745d3</originalsourceid><addsrcrecordid>eNqN0TtPwzAQB3ALgUR5jOyWWFgCZzt2ajaoeKqIAZgjx7nSglMHOwbKpyc8BIgFprvhd6c7_QnZYrDLQIu9Zh5M3Itd4oKLJTJgQsmMa6WWyQBAyGxYMLZK1mK8A4BccDUgL9dTpOemwUhHDsM9vTDPT-gc7dBhtL5FOsZbYxf0KoVHXFA_oV0_cuKTq-khum6fGtp4hzY5E6ibzZH2J9Rf8rKdzpKdpvhDWedTvUFWJsZF3Pys6-Tm-Oh6dJqNL0_ORgfjzOZKd5kGDpJLBVWtFaCGQnONoips39WmEAwrlCYvbA6SVdzmGrUUFU4EK3JZi3Wy87G3Df4hYezKZhZt_6OZo0-xZErpoRK8UP-hILSSwHq6_Yve-RTm_SO9yodiCDnTvco-lA0-xoCTsg2zxoRFyaB8C618D638DO37AJ_aP-gr-c-Y_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1648380419</pqid></control><display><type>article</type><title>The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud</title><source>Oxford Academic Journals (Open Access)</source><creator>White, Glenn J. ; Drabek-Maunder, Emily ; Rosolowsky, Erik ; Ward-Thompson, Derek ; Davis, C. J. ; Gregson, Jon ; Hatchell, Jenny ; Etxaluze, Mireya ; Stickler, Sarah ; Buckle, Jane ; Johnstone, Doug ; Friesen, Rachel ; Sadavoy, Sarah ; Natt, Kieran. V. ; Currie, Malcolm ; Richer, J. S. ; Pattle, Kate ; Spaans, Marco ; Francesco, James Di ; Hogerheijde, M. R.</creator><creatorcontrib>White, Glenn J. ; Drabek-Maunder, Emily ; Rosolowsky, Erik ; Ward-Thompson, Derek ; Davis, C. J. ; Gregson, Jon ; Hatchell, Jenny ; Etxaluze, Mireya ; Stickler, Sarah ; Buckle, Jane ; Johnstone, Doug ; Friesen, Rachel ; Sadavoy, Sarah ; Natt, Kieran. V. ; Currie, Malcolm ; Richer, J. S. ; Pattle, Kate ; Spaans, Marco ; Francesco, James Di ; Hogerheijde, M. R.</creatorcontrib><description>CO, 13CO, and C18O J = 3–2 observations are presented of the Ophiuchus molecular cloud. The 13CO and C18O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F, and J regions. The optically thin(ner) C18O line is used as a column density tracer, from which the gravitational binding energy is estimated to be 4.5 × 1039 J (2282 M⊙ km2 s−2). The turbulent kinetic energy is 6.3 × 1038 J (320 M⊙ km2 s−2), or seven times less than this, and therefore the Oph cloud as a whole is gravitationally bound. 30 protostars were searched for high-velocity gas, with 8 showing outflows, and 20 more having evidence of high-velocity gas along their lines of sight. The total outflow kinetic energy is 1.3 × 1038 J (67 M⊙ km2 s−2), corresponding to 21 per cent of the cloud's turbulent kinetic energy. Although turbulent injection by outflows is significant, but does not appear to be the dominant source of turbulence in the cloud. 105 dense molecular clumplets were identified, which had radii ∼0.01–0.05 pc, virial masses ∼0.1–12 M⊙, luminosities ∼0.001–0.1 K km s−1 pc−2, and excitation temperatures ∼10–50 K. These are consistent with the standard Giant Molecular Cloud (GMC) based size–linewidth relationships, showing that the scaling laws extend down to size scales of hundredths of a parsec, and to subsolar-mass condensations. There is however no compelling evidence that the majority of clumplets are undergoing free-fall collapse, nor that they are pressure confined.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stu2323</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Astronomy ; Clouds ; Collapse ; Computational fluid dynamics ; Density ; Kinetic energy ; Kinetics ; Luminosity ; Molecular clouds ; Outflow ; Star &amp; galaxy formation ; Turbulence</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2015-02, Vol.447 (2), p.1996-2020</ispartof><rights>2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2015</rights><rights>Copyright Oxford University Press, UK Feb 21, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-902052560bd960e907929e3b7c079da731ebe5a47c4051b2c49e953bef31745d3</citedby><cites>FETCH-LOGICAL-c469t-902052560bd960e907929e3b7c079da731ebe5a47c4051b2c49e953bef31745d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stu2323$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>White, Glenn J.</creatorcontrib><creatorcontrib>Drabek-Maunder, Emily</creatorcontrib><creatorcontrib>Rosolowsky, Erik</creatorcontrib><creatorcontrib>Ward-Thompson, Derek</creatorcontrib><creatorcontrib>Davis, C. J.</creatorcontrib><creatorcontrib>Gregson, Jon</creatorcontrib><creatorcontrib>Hatchell, Jenny</creatorcontrib><creatorcontrib>Etxaluze, Mireya</creatorcontrib><creatorcontrib>Stickler, Sarah</creatorcontrib><creatorcontrib>Buckle, Jane</creatorcontrib><creatorcontrib>Johnstone, Doug</creatorcontrib><creatorcontrib>Friesen, Rachel</creatorcontrib><creatorcontrib>Sadavoy, Sarah</creatorcontrib><creatorcontrib>Natt, Kieran. V.</creatorcontrib><creatorcontrib>Currie, Malcolm</creatorcontrib><creatorcontrib>Richer, J. S.</creatorcontrib><creatorcontrib>Pattle, Kate</creatorcontrib><creatorcontrib>Spaans, Marco</creatorcontrib><creatorcontrib>Francesco, James Di</creatorcontrib><creatorcontrib>Hogerheijde, M. R.</creatorcontrib><title>The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>CO, 13CO, and C18O J = 3–2 observations are presented of the Ophiuchus molecular cloud. The 13CO and C18O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F, and J regions. The optically thin(ner) C18O line is used as a column density tracer, from which the gravitational binding energy is estimated to be 4.5 × 1039 J (2282 M⊙ km2 s−2). The turbulent kinetic energy is 6.3 × 1038 J (320 M⊙ km2 s−2), or seven times less than this, and therefore the Oph cloud as a whole is gravitationally bound. 30 protostars were searched for high-velocity gas, with 8 showing outflows, and 20 more having evidence of high-velocity gas along their lines of sight. The total outflow kinetic energy is 1.3 × 1038 J (67 M⊙ km2 s−2), corresponding to 21 per cent of the cloud's turbulent kinetic energy. Although turbulent injection by outflows is significant, but does not appear to be the dominant source of turbulence in the cloud. 105 dense molecular clumplets were identified, which had radii ∼0.01–0.05 pc, virial masses ∼0.1–12 M⊙, luminosities ∼0.001–0.1 K km s−1 pc−2, and excitation temperatures ∼10–50 K. These are consistent with the standard Giant Molecular Cloud (GMC) based size–linewidth relationships, showing that the scaling laws extend down to size scales of hundredths of a parsec, and to subsolar-mass condensations. There is however no compelling evidence that the majority of clumplets are undergoing free-fall collapse, nor that they are pressure confined.</description><subject>Astronomy</subject><subject>Clouds</subject><subject>Collapse</subject><subject>Computational fluid dynamics</subject><subject>Density</subject><subject>Kinetic energy</subject><subject>Kinetics</subject><subject>Luminosity</subject><subject>Molecular clouds</subject><subject>Outflow</subject><subject>Star &amp; galaxy formation</subject><subject>Turbulence</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0TtPwzAQB3ALgUR5jOyWWFgCZzt2ajaoeKqIAZgjx7nSglMHOwbKpyc8BIgFprvhd6c7_QnZYrDLQIu9Zh5M3Itd4oKLJTJgQsmMa6WWyQBAyGxYMLZK1mK8A4BccDUgL9dTpOemwUhHDsM9vTDPT-gc7dBhtL5FOsZbYxf0KoVHXFA_oV0_cuKTq-khum6fGtp4hzY5E6ibzZH2J9Rf8rKdzpKdpvhDWedTvUFWJsZF3Pys6-Tm-Oh6dJqNL0_ORgfjzOZKd5kGDpJLBVWtFaCGQnONoips39WmEAwrlCYvbA6SVdzmGrUUFU4EK3JZi3Wy87G3Df4hYezKZhZt_6OZo0-xZErpoRK8UP-hILSSwHq6_Yve-RTm_SO9yodiCDnTvco-lA0-xoCTsg2zxoRFyaB8C618D638DO37AJ_aP-gr-c-Y_g</recordid><startdate>20150221</startdate><enddate>20150221</enddate><creator>White, Glenn J.</creator><creator>Drabek-Maunder, Emily</creator><creator>Rosolowsky, Erik</creator><creator>Ward-Thompson, Derek</creator><creator>Davis, C. J.</creator><creator>Gregson, Jon</creator><creator>Hatchell, Jenny</creator><creator>Etxaluze, Mireya</creator><creator>Stickler, Sarah</creator><creator>Buckle, Jane</creator><creator>Johnstone, Doug</creator><creator>Friesen, Rachel</creator><creator>Sadavoy, Sarah</creator><creator>Natt, Kieran. V.</creator><creator>Currie, Malcolm</creator><creator>Richer, J. S.</creator><creator>Pattle, Kate</creator><creator>Spaans, Marco</creator><creator>Francesco, James Di</creator><creator>Hogerheijde, M. R.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20150221</creationdate><title>The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud</title><author>White, Glenn J. ; Drabek-Maunder, Emily ; Rosolowsky, Erik ; Ward-Thompson, Derek ; Davis, C. J. ; Gregson, Jon ; Hatchell, Jenny ; Etxaluze, Mireya ; Stickler, Sarah ; Buckle, Jane ; Johnstone, Doug ; Friesen, Rachel ; Sadavoy, Sarah ; Natt, Kieran. V. ; Currie, Malcolm ; Richer, J. S. ; Pattle, Kate ; Spaans, Marco ; Francesco, James Di ; Hogerheijde, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-902052560bd960e907929e3b7c079da731ebe5a47c4051b2c49e953bef31745d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Astronomy</topic><topic>Clouds</topic><topic>Collapse</topic><topic>Computational fluid dynamics</topic><topic>Density</topic><topic>Kinetic energy</topic><topic>Kinetics</topic><topic>Luminosity</topic><topic>Molecular clouds</topic><topic>Outflow</topic><topic>Star &amp; galaxy formation</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Glenn J.</creatorcontrib><creatorcontrib>Drabek-Maunder, Emily</creatorcontrib><creatorcontrib>Rosolowsky, Erik</creatorcontrib><creatorcontrib>Ward-Thompson, Derek</creatorcontrib><creatorcontrib>Davis, C. J.</creatorcontrib><creatorcontrib>Gregson, Jon</creatorcontrib><creatorcontrib>Hatchell, Jenny</creatorcontrib><creatorcontrib>Etxaluze, Mireya</creatorcontrib><creatorcontrib>Stickler, Sarah</creatorcontrib><creatorcontrib>Buckle, Jane</creatorcontrib><creatorcontrib>Johnstone, Doug</creatorcontrib><creatorcontrib>Friesen, Rachel</creatorcontrib><creatorcontrib>Sadavoy, Sarah</creatorcontrib><creatorcontrib>Natt, Kieran. V.</creatorcontrib><creatorcontrib>Currie, Malcolm</creatorcontrib><creatorcontrib>Richer, J. S.</creatorcontrib><creatorcontrib>Pattle, Kate</creatorcontrib><creatorcontrib>Spaans, Marco</creatorcontrib><creatorcontrib>Francesco, James Di</creatorcontrib><creatorcontrib>Hogerheijde, M. R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>White, Glenn J.</au><au>Drabek-Maunder, Emily</au><au>Rosolowsky, Erik</au><au>Ward-Thompson, Derek</au><au>Davis, C. J.</au><au>Gregson, Jon</au><au>Hatchell, Jenny</au><au>Etxaluze, Mireya</au><au>Stickler, Sarah</au><au>Buckle, Jane</au><au>Johnstone, Doug</au><au>Friesen, Rachel</au><au>Sadavoy, Sarah</au><au>Natt, Kieran. V.</au><au>Currie, Malcolm</au><au>Richer, J. S.</au><au>Pattle, Kate</au><au>Spaans, Marco</au><au>Francesco, James Di</au><au>Hogerheijde, M. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><date>2015-02-21</date><risdate>2015</risdate><volume>447</volume><issue>2</issue><spage>1996</spage><epage>2020</epage><pages>1996-2020</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>CO, 13CO, and C18O J = 3–2 observations are presented of the Ophiuchus molecular cloud. The 13CO and C18O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F, and J regions. The optically thin(ner) C18O line is used as a column density tracer, from which the gravitational binding energy is estimated to be 4.5 × 1039 J (2282 M⊙ km2 s−2). The turbulent kinetic energy is 6.3 × 1038 J (320 M⊙ km2 s−2), or seven times less than this, and therefore the Oph cloud as a whole is gravitationally bound. 30 protostars were searched for high-velocity gas, with 8 showing outflows, and 20 more having evidence of high-velocity gas along their lines of sight. The total outflow kinetic energy is 1.3 × 1038 J (67 M⊙ km2 s−2), corresponding to 21 per cent of the cloud's turbulent kinetic energy. Although turbulent injection by outflows is significant, but does not appear to be the dominant source of turbulence in the cloud. 105 dense molecular clumplets were identified, which had radii ∼0.01–0.05 pc, virial masses ∼0.1–12 M⊙, luminosities ∼0.001–0.1 K km s−1 pc−2, and excitation temperatures ∼10–50 K. These are consistent with the standard Giant Molecular Cloud (GMC) based size–linewidth relationships, showing that the scaling laws extend down to size scales of hundredths of a parsec, and to subsolar-mass condensations. There is however no compelling evidence that the majority of clumplets are undergoing free-fall collapse, nor that they are pressure confined.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stu2323</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2015-02, Vol.447 (2), p.1996-2020
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_1669863276
source Oxford Academic Journals (Open Access)
subjects Astronomy
Clouds
Collapse
Computational fluid dynamics
Density
Kinetic energy
Kinetics
Luminosity
Molecular clouds
Outflow
Star & galaxy formation
Turbulence
title The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20James%20Clerk%20Maxwell%20telescope%20Legacy%20Survey%20of%20the%20Gould%20Belt:%20a%20molecular%20line%20study%20of%20the%20Ophiuchus%20molecular%20cloud&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=White,%20Glenn%20J.&rft.date=2015-02-21&rft.volume=447&rft.issue=2&rft.spage=1996&rft.epage=2020&rft.pages=1996-2020&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stu2323&rft_dat=%3Cproquest_TOX%3E1660396501%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-902052560bd960e907929e3b7c079da731ebe5a47c4051b2c49e953bef31745d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1648380419&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stu2323&rfr_iscdi=true