Loading…
The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud
CO, 13CO, and C18O J = 3–2 observations are presented of the Ophiuchus molecular cloud. The 13CO and C18O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F, and J regions. The optically thin(ner) C18O line is used as a column density tracer, from which the gravitational binding e...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2015-02, Vol.447 (2), p.1996-2020 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c469t-902052560bd960e907929e3b7c079da731ebe5a47c4051b2c49e953bef31745d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c469t-902052560bd960e907929e3b7c079da731ebe5a47c4051b2c49e953bef31745d3 |
container_end_page | 2020 |
container_issue | 2 |
container_start_page | 1996 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 447 |
creator | White, Glenn J. Drabek-Maunder, Emily Rosolowsky, Erik Ward-Thompson, Derek Davis, C. J. Gregson, Jon Hatchell, Jenny Etxaluze, Mireya Stickler, Sarah Buckle, Jane Johnstone, Doug Friesen, Rachel Sadavoy, Sarah Natt, Kieran. V. Currie, Malcolm Richer, J. S. Pattle, Kate Spaans, Marco Francesco, James Di Hogerheijde, M. R. |
description | CO, 13CO, and C18O J = 3–2 observations are presented of the Ophiuchus molecular cloud. The 13CO and C18O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F, and J regions. The optically thin(ner) C18O line is used as a column density tracer, from which the gravitational binding energy is estimated to be 4.5 × 1039 J (2282 M⊙ km2 s−2). The turbulent kinetic energy is 6.3 × 1038 J (320 M⊙ km2 s−2), or seven times less than this, and therefore the Oph cloud as a whole is gravitationally bound. 30 protostars were searched for high-velocity gas, with 8 showing outflows, and 20 more having evidence of high-velocity gas along their lines of sight. The total outflow kinetic energy is 1.3 × 1038 J (67 M⊙ km2 s−2), corresponding to 21 per cent of the cloud's turbulent kinetic energy. Although turbulent injection by outflows is significant, but does not appear to be the dominant source of turbulence in the cloud. 105 dense molecular clumplets were identified, which had radii ∼0.01–0.05 pc, virial masses ∼0.1–12 M⊙, luminosities ∼0.001–0.1 K km s−1 pc−2, and excitation temperatures ∼10–50 K. These are consistent with the standard Giant Molecular Cloud (GMC) based size–linewidth relationships, showing that the scaling laws extend down to size scales of hundredths of a parsec, and to subsolar-mass condensations. There is however no compelling evidence that the majority of clumplets are undergoing free-fall collapse, nor that they are pressure confined. |
doi_str_mv | 10.1093/mnras/stu2323 |
format | article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669863276</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stu2323</oup_id><sourcerecordid>1660396501</sourcerecordid><originalsourceid>FETCH-LOGICAL-c469t-902052560bd960e907929e3b7c079da731ebe5a47c4051b2c49e953bef31745d3</originalsourceid><addsrcrecordid>eNqN0TtPwzAQB3ALgUR5jOyWWFgCZzt2ajaoeKqIAZgjx7nSglMHOwbKpyc8BIgFprvhd6c7_QnZYrDLQIu9Zh5M3Itd4oKLJTJgQsmMa6WWyQBAyGxYMLZK1mK8A4BccDUgL9dTpOemwUhHDsM9vTDPT-gc7dBhtL5FOsZbYxf0KoVHXFA_oV0_cuKTq-khum6fGtp4hzY5E6ibzZH2J9Rf8rKdzpKdpvhDWedTvUFWJsZF3Pys6-Tm-Oh6dJqNL0_ORgfjzOZKd5kGDpJLBVWtFaCGQnONoips39WmEAwrlCYvbA6SVdzmGrUUFU4EK3JZi3Wy87G3Df4hYezKZhZt_6OZo0-xZErpoRK8UP-hILSSwHq6_Yve-RTm_SO9yodiCDnTvco-lA0-xoCTsg2zxoRFyaB8C618D638DO37AJ_aP-gr-c-Y_g</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1648380419</pqid></control><display><type>article</type><title>The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud</title><source>Oxford Academic Journals (Open Access)</source><creator>White, Glenn J. ; Drabek-Maunder, Emily ; Rosolowsky, Erik ; Ward-Thompson, Derek ; Davis, C. J. ; Gregson, Jon ; Hatchell, Jenny ; Etxaluze, Mireya ; Stickler, Sarah ; Buckle, Jane ; Johnstone, Doug ; Friesen, Rachel ; Sadavoy, Sarah ; Natt, Kieran. V. ; Currie, Malcolm ; Richer, J. S. ; Pattle, Kate ; Spaans, Marco ; Francesco, James Di ; Hogerheijde, M. R.</creator><creatorcontrib>White, Glenn J. ; Drabek-Maunder, Emily ; Rosolowsky, Erik ; Ward-Thompson, Derek ; Davis, C. J. ; Gregson, Jon ; Hatchell, Jenny ; Etxaluze, Mireya ; Stickler, Sarah ; Buckle, Jane ; Johnstone, Doug ; Friesen, Rachel ; Sadavoy, Sarah ; Natt, Kieran. V. ; Currie, Malcolm ; Richer, J. S. ; Pattle, Kate ; Spaans, Marco ; Francesco, James Di ; Hogerheijde, M. R.</creatorcontrib><description>CO, 13CO, and C18O J = 3–2 observations are presented of the Ophiuchus molecular cloud. The 13CO and C18O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F, and J regions. The optically thin(ner) C18O line is used as a column density tracer, from which the gravitational binding energy is estimated to be 4.5 × 1039 J (2282 M⊙ km2 s−2). The turbulent kinetic energy is 6.3 × 1038 J (320 M⊙ km2 s−2), or seven times less than this, and therefore the Oph cloud as a whole is gravitationally bound. 30 protostars were searched for high-velocity gas, with 8 showing outflows, and 20 more having evidence of high-velocity gas along their lines of sight. The total outflow kinetic energy is 1.3 × 1038 J (67 M⊙ km2 s−2), corresponding to 21 per cent of the cloud's turbulent kinetic energy. Although turbulent injection by outflows is significant, but does not appear to be the dominant source of turbulence in the cloud. 105 dense molecular clumplets were identified, which had radii ∼0.01–0.05 pc, virial masses ∼0.1–12 M⊙, luminosities ∼0.001–0.1 K km s−1 pc−2, and excitation temperatures ∼10–50 K. These are consistent with the standard Giant Molecular Cloud (GMC) based size–linewidth relationships, showing that the scaling laws extend down to size scales of hundredths of a parsec, and to subsolar-mass condensations. There is however no compelling evidence that the majority of clumplets are undergoing free-fall collapse, nor that they are pressure confined.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stu2323</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Astronomy ; Clouds ; Collapse ; Computational fluid dynamics ; Density ; Kinetic energy ; Kinetics ; Luminosity ; Molecular clouds ; Outflow ; Star & galaxy formation ; Turbulence</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2015-02, Vol.447 (2), p.1996-2020</ispartof><rights>2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2015</rights><rights>Copyright Oxford University Press, UK Feb 21, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c469t-902052560bd960e907929e3b7c079da731ebe5a47c4051b2c49e953bef31745d3</citedby><cites>FETCH-LOGICAL-c469t-902052560bd960e907929e3b7c079da731ebe5a47c4051b2c49e953bef31745d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1604,27924,27925</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stu2323$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>White, Glenn J.</creatorcontrib><creatorcontrib>Drabek-Maunder, Emily</creatorcontrib><creatorcontrib>Rosolowsky, Erik</creatorcontrib><creatorcontrib>Ward-Thompson, Derek</creatorcontrib><creatorcontrib>Davis, C. J.</creatorcontrib><creatorcontrib>Gregson, Jon</creatorcontrib><creatorcontrib>Hatchell, Jenny</creatorcontrib><creatorcontrib>Etxaluze, Mireya</creatorcontrib><creatorcontrib>Stickler, Sarah</creatorcontrib><creatorcontrib>Buckle, Jane</creatorcontrib><creatorcontrib>Johnstone, Doug</creatorcontrib><creatorcontrib>Friesen, Rachel</creatorcontrib><creatorcontrib>Sadavoy, Sarah</creatorcontrib><creatorcontrib>Natt, Kieran. V.</creatorcontrib><creatorcontrib>Currie, Malcolm</creatorcontrib><creatorcontrib>Richer, J. S.</creatorcontrib><creatorcontrib>Pattle, Kate</creatorcontrib><creatorcontrib>Spaans, Marco</creatorcontrib><creatorcontrib>Francesco, James Di</creatorcontrib><creatorcontrib>Hogerheijde, M. R.</creatorcontrib><title>The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>CO, 13CO, and C18O J = 3–2 observations are presented of the Ophiuchus molecular cloud. The 13CO and C18O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F, and J regions. The optically thin(ner) C18O line is used as a column density tracer, from which the gravitational binding energy is estimated to be 4.5 × 1039 J (2282 M⊙ km2 s−2). The turbulent kinetic energy is 6.3 × 1038 J (320 M⊙ km2 s−2), or seven times less than this, and therefore the Oph cloud as a whole is gravitationally bound. 30 protostars were searched for high-velocity gas, with 8 showing outflows, and 20 more having evidence of high-velocity gas along their lines of sight. The total outflow kinetic energy is 1.3 × 1038 J (67 M⊙ km2 s−2), corresponding to 21 per cent of the cloud's turbulent kinetic energy. Although turbulent injection by outflows is significant, but does not appear to be the dominant source of turbulence in the cloud. 105 dense molecular clumplets were identified, which had radii ∼0.01–0.05 pc, virial masses ∼0.1–12 M⊙, luminosities ∼0.001–0.1 K km s−1 pc−2, and excitation temperatures ∼10–50 K. These are consistent with the standard Giant Molecular Cloud (GMC) based size–linewidth relationships, showing that the scaling laws extend down to size scales of hundredths of a parsec, and to subsolar-mass condensations. There is however no compelling evidence that the majority of clumplets are undergoing free-fall collapse, nor that they are pressure confined.</description><subject>Astronomy</subject><subject>Clouds</subject><subject>Collapse</subject><subject>Computational fluid dynamics</subject><subject>Density</subject><subject>Kinetic energy</subject><subject>Kinetics</subject><subject>Luminosity</subject><subject>Molecular clouds</subject><subject>Outflow</subject><subject>Star & galaxy formation</subject><subject>Turbulence</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0TtPwzAQB3ALgUR5jOyWWFgCZzt2ajaoeKqIAZgjx7nSglMHOwbKpyc8BIgFprvhd6c7_QnZYrDLQIu9Zh5M3Itd4oKLJTJgQsmMa6WWyQBAyGxYMLZK1mK8A4BccDUgL9dTpOemwUhHDsM9vTDPT-gc7dBhtL5FOsZbYxf0KoVHXFA_oV0_cuKTq-khum6fGtp4hzY5E6ibzZH2J9Rf8rKdzpKdpvhDWedTvUFWJsZF3Pys6-Tm-Oh6dJqNL0_ORgfjzOZKd5kGDpJLBVWtFaCGQnONoips39WmEAwrlCYvbA6SVdzmGrUUFU4EK3JZi3Wy87G3Df4hYezKZhZt_6OZo0-xZErpoRK8UP-hILSSwHq6_Yve-RTm_SO9yodiCDnTvco-lA0-xoCTsg2zxoRFyaB8C618D638DO37AJ_aP-gr-c-Y_g</recordid><startdate>20150221</startdate><enddate>20150221</enddate><creator>White, Glenn J.</creator><creator>Drabek-Maunder, Emily</creator><creator>Rosolowsky, Erik</creator><creator>Ward-Thompson, Derek</creator><creator>Davis, C. J.</creator><creator>Gregson, Jon</creator><creator>Hatchell, Jenny</creator><creator>Etxaluze, Mireya</creator><creator>Stickler, Sarah</creator><creator>Buckle, Jane</creator><creator>Johnstone, Doug</creator><creator>Friesen, Rachel</creator><creator>Sadavoy, Sarah</creator><creator>Natt, Kieran. V.</creator><creator>Currie, Malcolm</creator><creator>Richer, J. S.</creator><creator>Pattle, Kate</creator><creator>Spaans, Marco</creator><creator>Francesco, James Di</creator><creator>Hogerheijde, M. R.</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope></search><sort><creationdate>20150221</creationdate><title>The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud</title><author>White, Glenn J. ; Drabek-Maunder, Emily ; Rosolowsky, Erik ; Ward-Thompson, Derek ; Davis, C. J. ; Gregson, Jon ; Hatchell, Jenny ; Etxaluze, Mireya ; Stickler, Sarah ; Buckle, Jane ; Johnstone, Doug ; Friesen, Rachel ; Sadavoy, Sarah ; Natt, Kieran. V. ; Currie, Malcolm ; Richer, J. S. ; Pattle, Kate ; Spaans, Marco ; Francesco, James Di ; Hogerheijde, M. R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c469t-902052560bd960e907929e3b7c079da731ebe5a47c4051b2c49e953bef31745d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Astronomy</topic><topic>Clouds</topic><topic>Collapse</topic><topic>Computational fluid dynamics</topic><topic>Density</topic><topic>Kinetic energy</topic><topic>Kinetics</topic><topic>Luminosity</topic><topic>Molecular clouds</topic><topic>Outflow</topic><topic>Star & galaxy formation</topic><topic>Turbulence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>White, Glenn J.</creatorcontrib><creatorcontrib>Drabek-Maunder, Emily</creatorcontrib><creatorcontrib>Rosolowsky, Erik</creatorcontrib><creatorcontrib>Ward-Thompson, Derek</creatorcontrib><creatorcontrib>Davis, C. J.</creatorcontrib><creatorcontrib>Gregson, Jon</creatorcontrib><creatorcontrib>Hatchell, Jenny</creatorcontrib><creatorcontrib>Etxaluze, Mireya</creatorcontrib><creatorcontrib>Stickler, Sarah</creatorcontrib><creatorcontrib>Buckle, Jane</creatorcontrib><creatorcontrib>Johnstone, Doug</creatorcontrib><creatorcontrib>Friesen, Rachel</creatorcontrib><creatorcontrib>Sadavoy, Sarah</creatorcontrib><creatorcontrib>Natt, Kieran. V.</creatorcontrib><creatorcontrib>Currie, Malcolm</creatorcontrib><creatorcontrib>Richer, J. S.</creatorcontrib><creatorcontrib>Pattle, Kate</creatorcontrib><creatorcontrib>Spaans, Marco</creatorcontrib><creatorcontrib>Francesco, James Di</creatorcontrib><creatorcontrib>Hogerheijde, M. R.</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>White, Glenn J.</au><au>Drabek-Maunder, Emily</au><au>Rosolowsky, Erik</au><au>Ward-Thompson, Derek</au><au>Davis, C. J.</au><au>Gregson, Jon</au><au>Hatchell, Jenny</au><au>Etxaluze, Mireya</au><au>Stickler, Sarah</au><au>Buckle, Jane</au><au>Johnstone, Doug</au><au>Friesen, Rachel</au><au>Sadavoy, Sarah</au><au>Natt, Kieran. V.</au><au>Currie, Malcolm</au><au>Richer, J. S.</au><au>Pattle, Kate</au><au>Spaans, Marco</au><au>Francesco, James Di</au><au>Hogerheijde, M. R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><date>2015-02-21</date><risdate>2015</risdate><volume>447</volume><issue>2</issue><spage>1996</spage><epage>2020</epage><pages>1996-2020</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>CO, 13CO, and C18O J = 3–2 observations are presented of the Ophiuchus molecular cloud. The 13CO and C18O emission is dominated by the Oph A clump, and the Oph B1, B2, C, E, F, and J regions. The optically thin(ner) C18O line is used as a column density tracer, from which the gravitational binding energy is estimated to be 4.5 × 1039 J (2282 M⊙ km2 s−2). The turbulent kinetic energy is 6.3 × 1038 J (320 M⊙ km2 s−2), or seven times less than this, and therefore the Oph cloud as a whole is gravitationally bound. 30 protostars were searched for high-velocity gas, with 8 showing outflows, and 20 more having evidence of high-velocity gas along their lines of sight. The total outflow kinetic energy is 1.3 × 1038 J (67 M⊙ km2 s−2), corresponding to 21 per cent of the cloud's turbulent kinetic energy. Although turbulent injection by outflows is significant, but does not appear to be the dominant source of turbulence in the cloud. 105 dense molecular clumplets were identified, which had radii ∼0.01–0.05 pc, virial masses ∼0.1–12 M⊙, luminosities ∼0.001–0.1 K km s−1 pc−2, and excitation temperatures ∼10–50 K. These are consistent with the standard Giant Molecular Cloud (GMC) based size–linewidth relationships, showing that the scaling laws extend down to size scales of hundredths of a parsec, and to subsolar-mass condensations. There is however no compelling evidence that the majority of clumplets are undergoing free-fall collapse, nor that they are pressure confined.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stu2323</doi><tpages>25</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2015-02, Vol.447 (2), p.1996-2020 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669863276 |
source | Oxford Academic Journals (Open Access) |
subjects | Astronomy Clouds Collapse Computational fluid dynamics Density Kinetic energy Kinetics Luminosity Molecular clouds Outflow Star & galaxy formation Turbulence |
title | The James Clerk Maxwell telescope Legacy Survey of the Gould Belt: a molecular line study of the Ophiuchus molecular cloud |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T15%3A28%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20James%20Clerk%20Maxwell%20telescope%20Legacy%20Survey%20of%20the%20Gould%20Belt:%20a%20molecular%20line%20study%20of%20the%20Ophiuchus%20molecular%20cloud&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=White,%20Glenn%20J.&rft.date=2015-02-21&rft.volume=447&rft.issue=2&rft.spage=1996&rft.epage=2020&rft.pages=1996-2020&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stu2323&rft_dat=%3Cproquest_TOX%3E1660396501%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c469t-902052560bd960e907929e3b7c079da731ebe5a47c4051b2c49e953bef31745d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1648380419&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stu2323&rfr_iscdi=true |