Loading…
ERMES: A nodal-based finite element code for electromagnetic simulations in frequency domain
In this work we present a new finite element code in frequency domain called ERMES. The novelty of this computational tool rests on the formulation behind it. ERMES is the C++ implementation of a simplified version of the weighted regularized Maxwell equation method. This finite element formulation...
Saved in:
Published in: | Computer physics communications 2013-11, Vol.184 (11), p.2588-2595 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c330t-4b04c3e128c8e0456011edfbdddc2df529c02eb10b3a5e5f67996f2b9ed9079e3 |
---|---|
cites | cdi_FETCH-LOGICAL-c330t-4b04c3e128c8e0456011edfbdddc2df529c02eb10b3a5e5f67996f2b9ed9079e3 |
container_end_page | 2595 |
container_issue | 11 |
container_start_page | 2588 |
container_title | Computer physics communications |
container_volume | 184 |
creator | Otin, Ruben |
description | In this work we present a new finite element code in frequency domain called ERMES. The novelty of this computational tool rests on the formulation behind it. ERMES is the C++ implementation of a simplified version of the weighted regularized Maxwell equation method. This finite element formulation has the advantage of producing well-conditioned matrices and the capacity of solving problems in the low (quasi-static) and high frequency regimens. As a consequence of this versatility, ERMES has been applied successfully to microwave engineering, antenna design, electromagnetic compatibility and eddy currents problems. This paper describes the main features of ERMES and explains how to use this numerical tool for computing electromagnetic fields in frequency domain.
Program title: ERMES
Catalogue identifier: AEPV_v1_0
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPV_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 223528
No. of bytes in distributed program, including test data, etc.: 35954099
Distribution format: tar.gz
Programming language: C++.
Computer: Any computer with Microsoft Windows (32-bits or 64-bits) installed.
Operating system: Microsoft Windows 32-bits or 64-bits.
RAM: Problem dependent. See [1] for examples of computational performance.
Classification: 10.
External routines:
GiD [5] is used for geometrical modeling, data input, meshing and visualization of results.
Nature of problem:
Time-harmonic Maxwell equations.
Solution method:
Finite element formulation based on the weighted regularized Maxwell equation method [2, 1, 3, 4].
Additional comments:
!!! The distribution file for this program is approximately 35 Mbytes and therefore is not delivered directly when the download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. !!!
Running time:
Problem dependent (see [1]).
References:[1]R. Otin, L. E. Garcia-Castillo, I. Martinez-Fernandez, D. Garcia-Donoro, Computational performance of a weighted regularized Maxwell equation finite element formulation, Progress In Electromagnetics Research 136 (2013) 61–77.[2]R. Otin, Regularized Maxwell equations and nodal finite elements for electro-magnetic field computations, Electromagnetics 30 (2010) 190–204.[3]M. Costabel, M. Dauge, Weighted regular |
doi_str_mv | 10.1016/j.cpc.2013.06.010 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669867802</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S001046551300204X</els_id><sourcerecordid>1669867802</sourcerecordid><originalsourceid>FETCH-LOGICAL-c330t-4b04c3e128c8e0456011edfbdddc2df529c02eb10b3a5e5f67996f2b9ed9079e3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhYMoWKs_wF2Wbma8mUdmoqsi9QEVwcdOCDPJjaTMJDWZCv33ptS1qwuHcw73fIRcMsgZMH69ztVG5QWwMgeeA4MjMmNtI7JCVNUxmUGSsorX9Sk5i3ENAE0jyhn5XL4-L99u6II6r7sh67uImhrr7IQUBxzRTVR5jdT4sBfUFPzYfTmcrKLRjtuhm6x3kVpHTcDvLTq1ozp5rDsnJ6YbIl783Tn5uF--3z1mq5eHp7vFKlNlCVNW9VCpElnRqhahqjkwhtr0WmtVaFMXQkGBPYO-7GqsDW-E4KboBWoBjcByTq4OvZvg0wNxkqONCoehc-i3UTLORcubFopkZQerCj7GgEZugh27sJMM5J6kXMtEUu5JSuAyYUuZ20MG04Yfi0FGZdNM1DYkHlJ7-0_6F-uEfFA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669867802</pqid></control><display><type>article</type><title>ERMES: A nodal-based finite element code for electromagnetic simulations in frequency domain</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Otin, Ruben</creator><creatorcontrib>Otin, Ruben</creatorcontrib><description>In this work we present a new finite element code in frequency domain called ERMES. The novelty of this computational tool rests on the formulation behind it. ERMES is the C++ implementation of a simplified version of the weighted regularized Maxwell equation method. This finite element formulation has the advantage of producing well-conditioned matrices and the capacity of solving problems in the low (quasi-static) and high frequency regimens. As a consequence of this versatility, ERMES has been applied successfully to microwave engineering, antenna design, electromagnetic compatibility and eddy currents problems. This paper describes the main features of ERMES and explains how to use this numerical tool for computing electromagnetic fields in frequency domain.
Program title: ERMES
Catalogue identifier: AEPV_v1_0
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPV_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 223528
No. of bytes in distributed program, including test data, etc.: 35954099
Distribution format: tar.gz
Programming language: C++.
Computer: Any computer with Microsoft Windows (32-bits or 64-bits) installed.
Operating system: Microsoft Windows 32-bits or 64-bits.
RAM: Problem dependent. See [1] for examples of computational performance.
Classification: 10.
External routines:
GiD [5] is used for geometrical modeling, data input, meshing and visualization of results.
Nature of problem:
Time-harmonic Maxwell equations.
Solution method:
Finite element formulation based on the weighted regularized Maxwell equation method [2, 1, 3, 4].
Additional comments:
!!! The distribution file for this program is approximately 35 Mbytes and therefore is not delivered directly when the download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. !!!
Running time:
Problem dependent (see [1]).
References:[1]R. Otin, L. E. Garcia-Castillo, I. Martinez-Fernandez, D. Garcia-Donoro, Computational performance of a weighted regularized Maxwell equation finite element formulation, Progress In Electromagnetics Research 136 (2013) 61–77.[2]R. Otin, Regularized Maxwell equations and nodal finite elements for electro-magnetic field computations, Electromagnetics 30 (2010) 190–204.[3]M. Costabel, M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains, Numerische Mathematik 93 (2) (2002) 239–277.[4]C. Hazard, M. Lenoir, On the solution of the time-harmonic scattering problems for Maxwell’s equations, SIAM Journal on Mathematical Analysis 27 (1996) 1597–1630.[5]GiD, The personal pre and post processor, International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain. [Online] Available: http://www.gidhome.com.</description><identifier>ISSN: 0010-4655</identifier><identifier>EISSN: 1879-2944</identifier><identifier>DOI: 10.1016/j.cpc.2013.06.010</identifier><language>eng</language><publisher>Elsevier B.V</publisher><subject>Computation ; Computational electromagnetics ; Computer simulation ; Electrostatics and electromagnetics ; Finite element analysis (02.70.Dh) ; Finite element method ; Frequency domains ; Mathematical analysis ; Mathematical models ; Maxwell equation ; Nodal elements ; Summaries ; Time-harmonic fields ; Weighted regularized Maxwell equations</subject><ispartof>Computer physics communications, 2013-11, Vol.184 (11), p.2588-2595</ispartof><rights>2013 Elsevier B.V.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c330t-4b04c3e128c8e0456011edfbdddc2df529c02eb10b3a5e5f67996f2b9ed9079e3</citedby><cites>FETCH-LOGICAL-c330t-4b04c3e128c8e0456011edfbdddc2df529c02eb10b3a5e5f67996f2b9ed9079e3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Otin, Ruben</creatorcontrib><title>ERMES: A nodal-based finite element code for electromagnetic simulations in frequency domain</title><title>Computer physics communications</title><description>In this work we present a new finite element code in frequency domain called ERMES. The novelty of this computational tool rests on the formulation behind it. ERMES is the C++ implementation of a simplified version of the weighted regularized Maxwell equation method. This finite element formulation has the advantage of producing well-conditioned matrices and the capacity of solving problems in the low (quasi-static) and high frequency regimens. As a consequence of this versatility, ERMES has been applied successfully to microwave engineering, antenna design, electromagnetic compatibility and eddy currents problems. This paper describes the main features of ERMES and explains how to use this numerical tool for computing electromagnetic fields in frequency domain.
Program title: ERMES
Catalogue identifier: AEPV_v1_0
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPV_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 223528
No. of bytes in distributed program, including test data, etc.: 35954099
Distribution format: tar.gz
Programming language: C++.
Computer: Any computer with Microsoft Windows (32-bits or 64-bits) installed.
Operating system: Microsoft Windows 32-bits or 64-bits.
RAM: Problem dependent. See [1] for examples of computational performance.
Classification: 10.
External routines:
GiD [5] is used for geometrical modeling, data input, meshing and visualization of results.
Nature of problem:
Time-harmonic Maxwell equations.
Solution method:
Finite element formulation based on the weighted regularized Maxwell equation method [2, 1, 3, 4].
Additional comments:
!!! The distribution file for this program is approximately 35 Mbytes and therefore is not delivered directly when the download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. !!!
Running time:
Problem dependent (see [1]).
References:[1]R. Otin, L. E. Garcia-Castillo, I. Martinez-Fernandez, D. Garcia-Donoro, Computational performance of a weighted regularized Maxwell equation finite element formulation, Progress In Electromagnetics Research 136 (2013) 61–77.[2]R. Otin, Regularized Maxwell equations and nodal finite elements for electro-magnetic field computations, Electromagnetics 30 (2010) 190–204.[3]M. Costabel, M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains, Numerische Mathematik 93 (2) (2002) 239–277.[4]C. Hazard, M. Lenoir, On the solution of the time-harmonic scattering problems for Maxwell’s equations, SIAM Journal on Mathematical Analysis 27 (1996) 1597–1630.[5]GiD, The personal pre and post processor, International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain. [Online] Available: http://www.gidhome.com.</description><subject>Computation</subject><subject>Computational electromagnetics</subject><subject>Computer simulation</subject><subject>Electrostatics and electromagnetics</subject><subject>Finite element analysis (02.70.Dh)</subject><subject>Finite element method</subject><subject>Frequency domains</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maxwell equation</subject><subject>Nodal elements</subject><subject>Summaries</subject><subject>Time-harmonic fields</subject><subject>Weighted regularized Maxwell equations</subject><issn>0010-4655</issn><issn>1879-2944</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhYMoWKs_wF2Wbma8mUdmoqsi9QEVwcdOCDPJjaTMJDWZCv33ptS1qwuHcw73fIRcMsgZMH69ztVG5QWwMgeeA4MjMmNtI7JCVNUxmUGSsorX9Sk5i3ENAE0jyhn5XL4-L99u6II6r7sh67uImhrr7IQUBxzRTVR5jdT4sBfUFPzYfTmcrKLRjtuhm6x3kVpHTcDvLTq1ozp5rDsnJ6YbIl783Tn5uF--3z1mq5eHp7vFKlNlCVNW9VCpElnRqhahqjkwhtr0WmtVaFMXQkGBPYO-7GqsDW-E4KboBWoBjcByTq4OvZvg0wNxkqONCoehc-i3UTLORcubFopkZQerCj7GgEZugh27sJMM5J6kXMtEUu5JSuAyYUuZ20MG04Yfi0FGZdNM1DYkHlJ7-0_6F-uEfFA</recordid><startdate>201311</startdate><enddate>201311</enddate><creator>Otin, Ruben</creator><general>Elsevier B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>201311</creationdate><title>ERMES: A nodal-based finite element code for electromagnetic simulations in frequency domain</title><author>Otin, Ruben</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c330t-4b04c3e128c8e0456011edfbdddc2df529c02eb10b3a5e5f67996f2b9ed9079e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Computation</topic><topic>Computational electromagnetics</topic><topic>Computer simulation</topic><topic>Electrostatics and electromagnetics</topic><topic>Finite element analysis (02.70.Dh)</topic><topic>Finite element method</topic><topic>Frequency domains</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maxwell equation</topic><topic>Nodal elements</topic><topic>Summaries</topic><topic>Time-harmonic fields</topic><topic>Weighted regularized Maxwell equations</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Otin, Ruben</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Computer physics communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Otin, Ruben</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>ERMES: A nodal-based finite element code for electromagnetic simulations in frequency domain</atitle><jtitle>Computer physics communications</jtitle><date>2013-11</date><risdate>2013</risdate><volume>184</volume><issue>11</issue><spage>2588</spage><epage>2595</epage><pages>2588-2595</pages><issn>0010-4655</issn><eissn>1879-2944</eissn><abstract>In this work we present a new finite element code in frequency domain called ERMES. The novelty of this computational tool rests on the formulation behind it. ERMES is the C++ implementation of a simplified version of the weighted regularized Maxwell equation method. This finite element formulation has the advantage of producing well-conditioned matrices and the capacity of solving problems in the low (quasi-static) and high frequency regimens. As a consequence of this versatility, ERMES has been applied successfully to microwave engineering, antenna design, electromagnetic compatibility and eddy currents problems. This paper describes the main features of ERMES and explains how to use this numerical tool for computing electromagnetic fields in frequency domain.
Program title: ERMES
Catalogue identifier: AEPV_v1_0
Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEPV_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html
No. of lines in distributed program, including test data, etc.: 223528
No. of bytes in distributed program, including test data, etc.: 35954099
Distribution format: tar.gz
Programming language: C++.
Computer: Any computer with Microsoft Windows (32-bits or 64-bits) installed.
Operating system: Microsoft Windows 32-bits or 64-bits.
RAM: Problem dependent. See [1] for examples of computational performance.
Classification: 10.
External routines:
GiD [5] is used for geometrical modeling, data input, meshing and visualization of results.
Nature of problem:
Time-harmonic Maxwell equations.
Solution method:
Finite element formulation based on the weighted regularized Maxwell equation method [2, 1, 3, 4].
Additional comments:
!!! The distribution file for this program is approximately 35 Mbytes and therefore is not delivered directly when the download or Email is requested. Instead a html file giving details of how the program can be obtained is sent. !!!
Running time:
Problem dependent (see [1]).
References:[1]R. Otin, L. E. Garcia-Castillo, I. Martinez-Fernandez, D. Garcia-Donoro, Computational performance of a weighted regularized Maxwell equation finite element formulation, Progress In Electromagnetics Research 136 (2013) 61–77.[2]R. Otin, Regularized Maxwell equations and nodal finite elements for electro-magnetic field computations, Electromagnetics 30 (2010) 190–204.[3]M. Costabel, M. Dauge, Weighted regularization of Maxwell equations in polyhedral domains, Numerische Mathematik 93 (2) (2002) 239–277.[4]C. Hazard, M. Lenoir, On the solution of the time-harmonic scattering problems for Maxwell’s equations, SIAM Journal on Mathematical Analysis 27 (1996) 1597–1630.[5]GiD, The personal pre and post processor, International Center for Numerical Methods in Engineering (CIMNE), Barcelona, Spain. [Online] Available: http://www.gidhome.com.</abstract><pub>Elsevier B.V</pub><doi>10.1016/j.cpc.2013.06.010</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0010-4655 |
ispartof | Computer physics communications, 2013-11, Vol.184 (11), p.2588-2595 |
issn | 0010-4655 1879-2944 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669867802 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Computation Computational electromagnetics Computer simulation Electrostatics and electromagnetics Finite element analysis (02.70.Dh) Finite element method Frequency domains Mathematical analysis Mathematical models Maxwell equation Nodal elements Summaries Time-harmonic fields Weighted regularized Maxwell equations |
title | ERMES: A nodal-based finite element code for electromagnetic simulations in frequency domain |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T10%3A29%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=ERMES:%20A%20nodal-based%20finite%20element%20code%20for%20electromagnetic%20simulations%20in%20frequency%20domain&rft.jtitle=Computer%20physics%20communications&rft.au=Otin,%20Ruben&rft.date=2013-11&rft.volume=184&rft.issue=11&rft.spage=2588&rft.epage=2595&rft.pages=2588-2595&rft.issn=0010-4655&rft.eissn=1879-2944&rft_id=info:doi/10.1016/j.cpc.2013.06.010&rft_dat=%3Cproquest_cross%3E1669867802%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c330t-4b04c3e128c8e0456011edfbdddc2df529c02eb10b3a5e5f67996f2b9ed9079e3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1669867802&rft_id=info:pmid/&rfr_iscdi=true |