Loading…

Quantum correlations and spatial localization in one-dimensional ultracold bosonic mixtures

We present the complete phase diagram for one-dimensional binary mixtures of bosonic ultracold atomic gases in a harmonic trap. We obtain exact results with direct numerical diagonalization for a small number of atoms, which permits us to quantify quantum many-body correlations. The quantum Monte Ca...

Full description

Saved in:
Bibliographic Details
Published in:New journal of physics 2014-10, Vol.16 (10), p.103004-17
Main Authors: García-March, M A, Juliá-Díaz, B, Astrakharchik, G E, Busch, Th, Boronat, J, Polls, A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c581t-b377e93bc6f276cebc6671e1d1cf3e543f3f08c317bb15e4c980b10fc1929bb53
cites cdi_FETCH-LOGICAL-c581t-b377e93bc6f276cebc6671e1d1cf3e543f3f08c317bb15e4c980b10fc1929bb53
container_end_page 17
container_issue 10
container_start_page 103004
container_title New journal of physics
container_volume 16
creator García-March, M A
Juliá-Díaz, B
Astrakharchik, G E
Busch, Th
Boronat, J
Polls, A
description We present the complete phase diagram for one-dimensional binary mixtures of bosonic ultracold atomic gases in a harmonic trap. We obtain exact results with direct numerical diagonalization for a small number of atoms, which permits us to quantify quantum many-body correlations. The quantum Monte Carlo method is used to calculate energies and density profiles for larger system sizes. We study the system properties for a wide range of interaction parameters. For the extreme values of these parameters, different correlation limits can be identified, where the correlations are either weak or strong. We investigate in detail how the correlations evolve between the limits. For balanced mixtures in the number of atoms in each species, the transition between the different limits involves sophisticated changes in the one- and two-body correlations. Particularly, we quantify the entanglement between the two components by means of the von Neumann entropy. We show that the limits equally exist when the number of atoms is increased for balanced mixtures. Also, the changes in the correlations along the transitions among these limits are qualitatively similar. We also show that, for imbalanced mixtures, the same limits with similar transitions exist. Finally, for strongly imbalanced systems, only two limits survive, i.e., a miscible limit and a phase-separated one, resembling those expected with a mean-field approach.
doi_str_mv 10.1088/1367-2630/16/10/103004
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669870640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6e3eb94a85624e95a1bb54162a326086</doaj_id><sourcerecordid>2312942362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c581t-b377e93bc6f276cebc6671e1d1cf3e543f3f08c317bb15e4c980b10fc1929bb53</originalsourceid><addsrcrecordid>eNqFkU-L1DAYxosouK5-BSl42UudvEmapEdZ1nVgQQQ9eQhJ-lYypM2YtLC7n950uoyLFw9J3n_PjyRPVb0H8hGIUjtgQjZUMLIDsYOyE0YIf1FdnBsvn8Wvqzc5HwgBUJReVD-_LWaal7F2MSUMZvZxyrWZ-jofS2JCHaIzwT-eOrWf6jhh0_sRp1wKpb-EORkXQ1_bmOPkXT36-3lJmN9WrwYTMr57Oi-rH59vvl9_ae6-3u6vP901rlUwN5ZJiR2zTgxUCoclEBIQenADw5azgQ1EOQbSWmiRu04RC2Rw0NHO2pZdVvuN20dz0MfkR5MedDRenwox_dImzd4F1AIZ2o4b1QrKsWsNFAAHQQ2jgihRWLCxXF6cTugwOTOfYOdkXZRIqilnkrGiudo0xxR_L5hnPfrsMAQzYVyyBiE6JYngpIx--Gf0EJdUvjFryoB2nDJBy5R4ukSKOScczo8ColfP9WqnXu0s8K24el6EdBP6ePxL_o_oDwQirVY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312942362</pqid></control><display><type>article</type><title>Quantum correlations and spatial localization in one-dimensional ultracold bosonic mixtures</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>García-March, M A ; Juliá-Díaz, B ; Astrakharchik, G E ; Busch, Th ; Boronat, J ; Polls, A</creator><creatorcontrib>García-March, M A ; Juliá-Díaz, B ; Astrakharchik, G E ; Busch, Th ; Boronat, J ; Polls, A</creatorcontrib><description>We present the complete phase diagram for one-dimensional binary mixtures of bosonic ultracold atomic gases in a harmonic trap. We obtain exact results with direct numerical diagonalization for a small number of atoms, which permits us to quantify quantum many-body correlations. The quantum Monte Carlo method is used to calculate energies and density profiles for larger system sizes. We study the system properties for a wide range of interaction parameters. For the extreme values of these parameters, different correlation limits can be identified, where the correlations are either weak or strong. We investigate in detail how the correlations evolve between the limits. For balanced mixtures in the number of atoms in each species, the transition between the different limits involves sophisticated changes in the one- and two-body correlations. Particularly, we quantify the entanglement between the two components by means of the von Neumann entropy. We show that the limits equally exist when the number of atoms is increased for balanced mixtures. Also, the changes in the correlations along the transitions among these limits are qualitatively similar. We also show that, for imbalanced mixtures, the same limits with similar transitions exist. Finally, for strongly imbalanced systems, only two limits survive, i.e., a miscible limit and a phase-separated one, resembling those expected with a mean-field approach.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/16/10/103004</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Atomic properties ; atoms ; Balancing ; Binary mixtures ; Bose-Einstein condensate ; Bose-Einstein condensation ; bosonic mixtures ; Bosons ; Condensació de Bose-Einstein ; confinement ; Correlation ; Density ; Entanglement ; Entropy ; Extreme values ; fermions ; few-atom systems ; Física ; harmonic trap ; impenetrable bosons ; Interacting boson models ; Interacting boson-fermion models ; interacting bosons ; Interaction parameters ; macroscopic superpositions ; Mathematical analysis ; Mathematical models ; Monte Carlo simulation ; Parameter identification ; Phase diagrams ; Physics ; separation ; stability ; Tonks-Girardeau gas ; Àrees temàtiques de la UPC</subject><ispartof>New journal of physics, 2014-10, Vol.16 (10), p.103004-17</ispartof><rights>2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft</rights><rights>2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess &lt;a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/"&gt;http://creativecommons.org/licenses/by-nc-nd/3.0/es/&lt;/a&gt;</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c581t-b377e93bc6f276cebc6671e1d1cf3e543f3f08c317bb15e4c980b10fc1929bb53</citedby><cites>FETCH-LOGICAL-c581t-b377e93bc6f276cebc6671e1d1cf3e543f3f08c317bb15e4c980b10fc1929bb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2312942362?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590</link.rule.ids></links><search><creatorcontrib>García-March, M A</creatorcontrib><creatorcontrib>Juliá-Díaz, B</creatorcontrib><creatorcontrib>Astrakharchik, G E</creatorcontrib><creatorcontrib>Busch, Th</creatorcontrib><creatorcontrib>Boronat, J</creatorcontrib><creatorcontrib>Polls, A</creatorcontrib><title>Quantum correlations and spatial localization in one-dimensional ultracold bosonic mixtures</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>We present the complete phase diagram for one-dimensional binary mixtures of bosonic ultracold atomic gases in a harmonic trap. We obtain exact results with direct numerical diagonalization for a small number of atoms, which permits us to quantify quantum many-body correlations. The quantum Monte Carlo method is used to calculate energies and density profiles for larger system sizes. We study the system properties for a wide range of interaction parameters. For the extreme values of these parameters, different correlation limits can be identified, where the correlations are either weak or strong. We investigate in detail how the correlations evolve between the limits. For balanced mixtures in the number of atoms in each species, the transition between the different limits involves sophisticated changes in the one- and two-body correlations. Particularly, we quantify the entanglement between the two components by means of the von Neumann entropy. We show that the limits equally exist when the number of atoms is increased for balanced mixtures. Also, the changes in the correlations along the transitions among these limits are qualitatively similar. We also show that, for imbalanced mixtures, the same limits with similar transitions exist. Finally, for strongly imbalanced systems, only two limits survive, i.e., a miscible limit and a phase-separated one, resembling those expected with a mean-field approach.</description><subject>Atomic properties</subject><subject>atoms</subject><subject>Balancing</subject><subject>Binary mixtures</subject><subject>Bose-Einstein condensate</subject><subject>Bose-Einstein condensation</subject><subject>bosonic mixtures</subject><subject>Bosons</subject><subject>Condensació de Bose-Einstein</subject><subject>confinement</subject><subject>Correlation</subject><subject>Density</subject><subject>Entanglement</subject><subject>Entropy</subject><subject>Extreme values</subject><subject>fermions</subject><subject>few-atom systems</subject><subject>Física</subject><subject>harmonic trap</subject><subject>impenetrable bosons</subject><subject>Interacting boson models</subject><subject>Interacting boson-fermion models</subject><subject>interacting bosons</subject><subject>Interaction parameters</subject><subject>macroscopic superpositions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>Parameter identification</subject><subject>Phase diagrams</subject><subject>Physics</subject><subject>separation</subject><subject>stability</subject><subject>Tonks-Girardeau gas</subject><subject>Àrees temàtiques de la UPC</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU-L1DAYxosouK5-BSl42UudvEmapEdZ1nVgQQQ9eQhJ-lYypM2YtLC7n950uoyLFw9J3n_PjyRPVb0H8hGIUjtgQjZUMLIDsYOyE0YIf1FdnBsvn8Wvqzc5HwgBUJReVD-_LWaal7F2MSUMZvZxyrWZ-jofS2JCHaIzwT-eOrWf6jhh0_sRp1wKpb-EORkXQ1_bmOPkXT36-3lJmN9WrwYTMr57Oi-rH59vvl9_ae6-3u6vP901rlUwN5ZJiR2zTgxUCoclEBIQenADw5azgQ1EOQbSWmiRu04RC2Rw0NHO2pZdVvuN20dz0MfkR5MedDRenwox_dImzd4F1AIZ2o4b1QrKsWsNFAAHQQ2jgihRWLCxXF6cTugwOTOfYOdkXZRIqilnkrGiudo0xxR_L5hnPfrsMAQzYVyyBiE6JYngpIx--Gf0EJdUvjFryoB2nDJBy5R4ukSKOScczo8ColfP9WqnXu0s8K24el6EdBP6ePxL_o_oDwQirVY</recordid><startdate>20141007</startdate><enddate>20141007</enddate><creator>García-March, M A</creator><creator>Juliá-Díaz, B</creator><creator>Astrakharchik, G E</creator><creator>Busch, Th</creator><creator>Boronat, J</creator><creator>Polls, A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>XX2</scope><scope>DOA</scope></search><sort><creationdate>20141007</creationdate><title>Quantum correlations and spatial localization in one-dimensional ultracold bosonic mixtures</title><author>García-March, M A ; Juliá-Díaz, B ; Astrakharchik, G E ; Busch, Th ; Boronat, J ; Polls, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c581t-b377e93bc6f276cebc6671e1d1cf3e543f3f08c317bb15e4c980b10fc1929bb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atomic properties</topic><topic>atoms</topic><topic>Balancing</topic><topic>Binary mixtures</topic><topic>Bose-Einstein condensate</topic><topic>Bose-Einstein condensation</topic><topic>bosonic mixtures</topic><topic>Bosons</topic><topic>Condensació de Bose-Einstein</topic><topic>confinement</topic><topic>Correlation</topic><topic>Density</topic><topic>Entanglement</topic><topic>Entropy</topic><topic>Extreme values</topic><topic>fermions</topic><topic>few-atom systems</topic><topic>Física</topic><topic>harmonic trap</topic><topic>impenetrable bosons</topic><topic>Interacting boson models</topic><topic>Interacting boson-fermion models</topic><topic>interacting bosons</topic><topic>Interaction parameters</topic><topic>macroscopic superpositions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>Parameter identification</topic><topic>Phase diagrams</topic><topic>Physics</topic><topic>separation</topic><topic>stability</topic><topic>Tonks-Girardeau gas</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-March, M A</creatorcontrib><creatorcontrib>Juliá-Díaz, B</creatorcontrib><creatorcontrib>Astrakharchik, G E</creatorcontrib><creatorcontrib>Busch, Th</creatorcontrib><creatorcontrib>Boronat, J</creatorcontrib><creatorcontrib>Polls, A</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Recercat</collection><collection>Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-March, M A</au><au>Juliá-Díaz, B</au><au>Astrakharchik, G E</au><au>Busch, Th</au><au>Boronat, J</au><au>Polls, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum correlations and spatial localization in one-dimensional ultracold bosonic mixtures</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2014-10-07</date><risdate>2014</risdate><volume>16</volume><issue>10</issue><spage>103004</spage><epage>17</epage><pages>103004-17</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>We present the complete phase diagram for one-dimensional binary mixtures of bosonic ultracold atomic gases in a harmonic trap. We obtain exact results with direct numerical diagonalization for a small number of atoms, which permits us to quantify quantum many-body correlations. The quantum Monte Carlo method is used to calculate energies and density profiles for larger system sizes. We study the system properties for a wide range of interaction parameters. For the extreme values of these parameters, different correlation limits can be identified, where the correlations are either weak or strong. We investigate in detail how the correlations evolve between the limits. For balanced mixtures in the number of atoms in each species, the transition between the different limits involves sophisticated changes in the one- and two-body correlations. Particularly, we quantify the entanglement between the two components by means of the von Neumann entropy. We show that the limits equally exist when the number of atoms is increased for balanced mixtures. Also, the changes in the correlations along the transitions among these limits are qualitatively similar. We also show that, for imbalanced mixtures, the same limits with similar transitions exist. Finally, for strongly imbalanced systems, only two limits survive, i.e., a miscible limit and a phase-separated one, resembling those expected with a mean-field approach.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/16/10/103004</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-2630
ispartof New journal of physics, 2014-10, Vol.16 (10), p.103004-17
issn 1367-2630
1367-2630
language eng
recordid cdi_proquest_miscellaneous_1669870640
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Atomic properties
atoms
Balancing
Binary mixtures
Bose-Einstein condensate
Bose-Einstein condensation
bosonic mixtures
Bosons
Condensació de Bose-Einstein
confinement
Correlation
Density
Entanglement
Entropy
Extreme values
fermions
few-atom systems
Física
harmonic trap
impenetrable bosons
Interacting boson models
Interacting boson-fermion models
interacting bosons
Interaction parameters
macroscopic superpositions
Mathematical analysis
Mathematical models
Monte Carlo simulation
Parameter identification
Phase diagrams
Physics
separation
stability
Tonks-Girardeau gas
Àrees temàtiques de la UPC
title Quantum correlations and spatial localization in one-dimensional ultracold bosonic mixtures
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20correlations%20and%20spatial%20localization%20in%20one-dimensional%20ultracold%20bosonic%20mixtures&rft.jtitle=New%20journal%20of%20physics&rft.au=Garc%C3%ADa-March,%20M%20A&rft.date=2014-10-07&rft.volume=16&rft.issue=10&rft.spage=103004&rft.epage=17&rft.pages=103004-17&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/16/10/103004&rft_dat=%3Cproquest_doaj_%3E2312942362%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c581t-b377e93bc6f276cebc6671e1d1cf3e543f3f08c317bb15e4c980b10fc1929bb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2312942362&rft_id=info:pmid/&rfr_iscdi=true