Loading…
Quantum correlations and spatial localization in one-dimensional ultracold bosonic mixtures
We present the complete phase diagram for one-dimensional binary mixtures of bosonic ultracold atomic gases in a harmonic trap. We obtain exact results with direct numerical diagonalization for a small number of atoms, which permits us to quantify quantum many-body correlations. The quantum Monte Ca...
Saved in:
Published in: | New journal of physics 2014-10, Vol.16 (10), p.103004-17 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c581t-b377e93bc6f276cebc6671e1d1cf3e543f3f08c317bb15e4c980b10fc1929bb53 |
---|---|
cites | cdi_FETCH-LOGICAL-c581t-b377e93bc6f276cebc6671e1d1cf3e543f3f08c317bb15e4c980b10fc1929bb53 |
container_end_page | 17 |
container_issue | 10 |
container_start_page | 103004 |
container_title | New journal of physics |
container_volume | 16 |
creator | García-March, M A Juliá-Díaz, B Astrakharchik, G E Busch, Th Boronat, J Polls, A |
description | We present the complete phase diagram for one-dimensional binary mixtures of bosonic ultracold atomic gases in a harmonic trap. We obtain exact results with direct numerical diagonalization for a small number of atoms, which permits us to quantify quantum many-body correlations. The quantum Monte Carlo method is used to calculate energies and density profiles for larger system sizes. We study the system properties for a wide range of interaction parameters. For the extreme values of these parameters, different correlation limits can be identified, where the correlations are either weak or strong. We investigate in detail how the correlations evolve between the limits. For balanced mixtures in the number of atoms in each species, the transition between the different limits involves sophisticated changes in the one- and two-body correlations. Particularly, we quantify the entanglement between the two components by means of the von Neumann entropy. We show that the limits equally exist when the number of atoms is increased for balanced mixtures. Also, the changes in the correlations along the transitions among these limits are qualitatively similar. We also show that, for imbalanced mixtures, the same limits with similar transitions exist. Finally, for strongly imbalanced systems, only two limits survive, i.e., a miscible limit and a phase-separated one, resembling those expected with a mean-field approach. |
doi_str_mv | 10.1088/1367-2630/16/10/103004 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669870640</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_6e3eb94a85624e95a1bb54162a326086</doaj_id><sourcerecordid>2312942362</sourcerecordid><originalsourceid>FETCH-LOGICAL-c581t-b377e93bc6f276cebc6671e1d1cf3e543f3f08c317bb15e4c980b10fc1929bb53</originalsourceid><addsrcrecordid>eNqFkU-L1DAYxosouK5-BSl42UudvEmapEdZ1nVgQQQ9eQhJ-lYypM2YtLC7n950uoyLFw9J3n_PjyRPVb0H8hGIUjtgQjZUMLIDsYOyE0YIf1FdnBsvn8Wvqzc5HwgBUJReVD-_LWaal7F2MSUMZvZxyrWZ-jofS2JCHaIzwT-eOrWf6jhh0_sRp1wKpb-EORkXQ1_bmOPkXT36-3lJmN9WrwYTMr57Oi-rH59vvl9_ae6-3u6vP901rlUwN5ZJiR2zTgxUCoclEBIQenADw5azgQ1EOQbSWmiRu04RC2Rw0NHO2pZdVvuN20dz0MfkR5MedDRenwox_dImzd4F1AIZ2o4b1QrKsWsNFAAHQQ2jgihRWLCxXF6cTugwOTOfYOdkXZRIqilnkrGiudo0xxR_L5hnPfrsMAQzYVyyBiE6JYngpIx--Gf0EJdUvjFryoB2nDJBy5R4ukSKOScczo8ColfP9WqnXu0s8K24el6EdBP6ePxL_o_oDwQirVY</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2312942362</pqid></control><display><type>article</type><title>Quantum correlations and spatial localization in one-dimensional ultracold bosonic mixtures</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>García-March, M A ; Juliá-Díaz, B ; Astrakharchik, G E ; Busch, Th ; Boronat, J ; Polls, A</creator><creatorcontrib>García-March, M A ; Juliá-Díaz, B ; Astrakharchik, G E ; Busch, Th ; Boronat, J ; Polls, A</creatorcontrib><description>We present the complete phase diagram for one-dimensional binary mixtures of bosonic ultracold atomic gases in a harmonic trap. We obtain exact results with direct numerical diagonalization for a small number of atoms, which permits us to quantify quantum many-body correlations. The quantum Monte Carlo method is used to calculate energies and density profiles for larger system sizes. We study the system properties for a wide range of interaction parameters. For the extreme values of these parameters, different correlation limits can be identified, where the correlations are either weak or strong. We investigate in detail how the correlations evolve between the limits. For balanced mixtures in the number of atoms in each species, the transition between the different limits involves sophisticated changes in the one- and two-body correlations. Particularly, we quantify the entanglement between the two components by means of the von Neumann entropy. We show that the limits equally exist when the number of atoms is increased for balanced mixtures. Also, the changes in the correlations along the transitions among these limits are qualitatively similar. We also show that, for imbalanced mixtures, the same limits with similar transitions exist. Finally, for strongly imbalanced systems, only two limits survive, i.e., a miscible limit and a phase-separated one, resembling those expected with a mean-field approach.</description><identifier>ISSN: 1367-2630</identifier><identifier>EISSN: 1367-2630</identifier><identifier>DOI: 10.1088/1367-2630/16/10/103004</identifier><identifier>CODEN: NJOPFM</identifier><language>eng</language><publisher>Bristol: IOP Publishing</publisher><subject>Atomic properties ; atoms ; Balancing ; Binary mixtures ; Bose-Einstein condensate ; Bose-Einstein condensation ; bosonic mixtures ; Bosons ; Condensació de Bose-Einstein ; confinement ; Correlation ; Density ; Entanglement ; Entropy ; Extreme values ; fermions ; few-atom systems ; Física ; harmonic trap ; impenetrable bosons ; Interacting boson models ; Interacting boson-fermion models ; interacting bosons ; Interaction parameters ; macroscopic superpositions ; Mathematical analysis ; Mathematical models ; Monte Carlo simulation ; Parameter identification ; Phase diagrams ; Physics ; separation ; stability ; Tonks-Girardeau gas ; Àrees temàtiques de la UPC</subject><ispartof>New journal of physics, 2014-10, Vol.16 (10), p.103004-17</ispartof><rights>2014 IOP Publishing Ltd and Deutsche Physikalische Gesellschaft</rights><rights>2014. This work is published under http://creativecommons.org/licenses/by/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution-NonCommercial-NoDerivs 3.0 Spain info:eu-repo/semantics/openAccess <a href="http://creativecommons.org/licenses/by-nc-nd/3.0/es/">http://creativecommons.org/licenses/by-nc-nd/3.0/es/</a></rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c581t-b377e93bc6f276cebc6671e1d1cf3e543f3f08c317bb15e4c980b10fc1929bb53</citedby><cites>FETCH-LOGICAL-c581t-b377e93bc6f276cebc6671e1d1cf3e543f3f08c317bb15e4c980b10fc1929bb53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/2312942362?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,25753,27924,27925,37012,37013,44590</link.rule.ids></links><search><creatorcontrib>García-March, M A</creatorcontrib><creatorcontrib>Juliá-Díaz, B</creatorcontrib><creatorcontrib>Astrakharchik, G E</creatorcontrib><creatorcontrib>Busch, Th</creatorcontrib><creatorcontrib>Boronat, J</creatorcontrib><creatorcontrib>Polls, A</creatorcontrib><title>Quantum correlations and spatial localization in one-dimensional ultracold bosonic mixtures</title><title>New journal of physics</title><addtitle>NJP</addtitle><addtitle>New J. Phys</addtitle><description>We present the complete phase diagram for one-dimensional binary mixtures of bosonic ultracold atomic gases in a harmonic trap. We obtain exact results with direct numerical diagonalization for a small number of atoms, which permits us to quantify quantum many-body correlations. The quantum Monte Carlo method is used to calculate energies and density profiles for larger system sizes. We study the system properties for a wide range of interaction parameters. For the extreme values of these parameters, different correlation limits can be identified, where the correlations are either weak or strong. We investigate in detail how the correlations evolve between the limits. For balanced mixtures in the number of atoms in each species, the transition between the different limits involves sophisticated changes in the one- and two-body correlations. Particularly, we quantify the entanglement between the two components by means of the von Neumann entropy. We show that the limits equally exist when the number of atoms is increased for balanced mixtures. Also, the changes in the correlations along the transitions among these limits are qualitatively similar. We also show that, for imbalanced mixtures, the same limits with similar transitions exist. Finally, for strongly imbalanced systems, only two limits survive, i.e., a miscible limit and a phase-separated one, resembling those expected with a mean-field approach.</description><subject>Atomic properties</subject><subject>atoms</subject><subject>Balancing</subject><subject>Binary mixtures</subject><subject>Bose-Einstein condensate</subject><subject>Bose-Einstein condensation</subject><subject>bosonic mixtures</subject><subject>Bosons</subject><subject>Condensació de Bose-Einstein</subject><subject>confinement</subject><subject>Correlation</subject><subject>Density</subject><subject>Entanglement</subject><subject>Entropy</subject><subject>Extreme values</subject><subject>fermions</subject><subject>few-atom systems</subject><subject>Física</subject><subject>harmonic trap</subject><subject>impenetrable bosons</subject><subject>Interacting boson models</subject><subject>Interacting boson-fermion models</subject><subject>interacting bosons</subject><subject>Interaction parameters</subject><subject>macroscopic superpositions</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Monte Carlo simulation</subject><subject>Parameter identification</subject><subject>Phase diagrams</subject><subject>Physics</subject><subject>separation</subject><subject>stability</subject><subject>Tonks-Girardeau gas</subject><subject>Àrees temàtiques de la UPC</subject><issn>1367-2630</issn><issn>1367-2630</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqFkU-L1DAYxosouK5-BSl42UudvEmapEdZ1nVgQQQ9eQhJ-lYypM2YtLC7n950uoyLFw9J3n_PjyRPVb0H8hGIUjtgQjZUMLIDsYOyE0YIf1FdnBsvn8Wvqzc5HwgBUJReVD-_LWaal7F2MSUMZvZxyrWZ-jofS2JCHaIzwT-eOrWf6jhh0_sRp1wKpb-EORkXQ1_bmOPkXT36-3lJmN9WrwYTMr57Oi-rH59vvl9_ae6-3u6vP901rlUwN5ZJiR2zTgxUCoclEBIQenADw5azgQ1EOQbSWmiRu04RC2Rw0NHO2pZdVvuN20dz0MfkR5MedDRenwox_dImzd4F1AIZ2o4b1QrKsWsNFAAHQQ2jgihRWLCxXF6cTugwOTOfYOdkXZRIqilnkrGiudo0xxR_L5hnPfrsMAQzYVyyBiE6JYngpIx--Gf0EJdUvjFryoB2nDJBy5R4ukSKOScczo8ColfP9WqnXu0s8K24el6EdBP6ePxL_o_oDwQirVY</recordid><startdate>20141007</startdate><enddate>20141007</enddate><creator>García-March, M A</creator><creator>Juliá-Díaz, B</creator><creator>Astrakharchik, G E</creator><creator>Busch, Th</creator><creator>Boronat, J</creator><creator>Polls, A</creator><general>IOP Publishing</general><scope>O3W</scope><scope>TSCCA</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>H8D</scope><scope>L7M</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7U5</scope><scope>XX2</scope><scope>DOA</scope></search><sort><creationdate>20141007</creationdate><title>Quantum correlations and spatial localization in one-dimensional ultracold bosonic mixtures</title><author>García-March, M A ; Juliá-Díaz, B ; Astrakharchik, G E ; Busch, Th ; Boronat, J ; Polls, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c581t-b377e93bc6f276cebc6671e1d1cf3e543f3f08c317bb15e4c980b10fc1929bb53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Atomic properties</topic><topic>atoms</topic><topic>Balancing</topic><topic>Binary mixtures</topic><topic>Bose-Einstein condensate</topic><topic>Bose-Einstein condensation</topic><topic>bosonic mixtures</topic><topic>Bosons</topic><topic>Condensació de Bose-Einstein</topic><topic>confinement</topic><topic>Correlation</topic><topic>Density</topic><topic>Entanglement</topic><topic>Entropy</topic><topic>Extreme values</topic><topic>fermions</topic><topic>few-atom systems</topic><topic>Física</topic><topic>harmonic trap</topic><topic>impenetrable bosons</topic><topic>Interacting boson models</topic><topic>Interacting boson-fermion models</topic><topic>interacting bosons</topic><topic>Interaction parameters</topic><topic>macroscopic superpositions</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Monte Carlo simulation</topic><topic>Parameter identification</topic><topic>Phase diagrams</topic><topic>Physics</topic><topic>separation</topic><topic>stability</topic><topic>Tonks-Girardeau gas</topic><topic>Àrees temàtiques de la UPC</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>García-March, M A</creatorcontrib><creatorcontrib>Juliá-Díaz, B</creatorcontrib><creatorcontrib>Astrakharchik, G E</creatorcontrib><creatorcontrib>Busch, Th</creatorcontrib><creatorcontrib>Boronat, J</creatorcontrib><creatorcontrib>Polls, A</creatorcontrib><collection>Open Access: IOP Publishing Free Content</collection><collection>IOPscience (Open Access)</collection><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Recercat</collection><collection>Directory of Open Access Journals</collection><jtitle>New journal of physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>García-March, M A</au><au>Juliá-Díaz, B</au><au>Astrakharchik, G E</au><au>Busch, Th</au><au>Boronat, J</au><au>Polls, A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantum correlations and spatial localization in one-dimensional ultracold bosonic mixtures</atitle><jtitle>New journal of physics</jtitle><stitle>NJP</stitle><addtitle>New J. Phys</addtitle><date>2014-10-07</date><risdate>2014</risdate><volume>16</volume><issue>10</issue><spage>103004</spage><epage>17</epage><pages>103004-17</pages><issn>1367-2630</issn><eissn>1367-2630</eissn><coden>NJOPFM</coden><abstract>We present the complete phase diagram for one-dimensional binary mixtures of bosonic ultracold atomic gases in a harmonic trap. We obtain exact results with direct numerical diagonalization for a small number of atoms, which permits us to quantify quantum many-body correlations. The quantum Monte Carlo method is used to calculate energies and density profiles for larger system sizes. We study the system properties for a wide range of interaction parameters. For the extreme values of these parameters, different correlation limits can be identified, where the correlations are either weak or strong. We investigate in detail how the correlations evolve between the limits. For balanced mixtures in the number of atoms in each species, the transition between the different limits involves sophisticated changes in the one- and two-body correlations. Particularly, we quantify the entanglement between the two components by means of the von Neumann entropy. We show that the limits equally exist when the number of atoms is increased for balanced mixtures. Also, the changes in the correlations along the transitions among these limits are qualitatively similar. We also show that, for imbalanced mixtures, the same limits with similar transitions exist. Finally, for strongly imbalanced systems, only two limits survive, i.e., a miscible limit and a phase-separated one, resembling those expected with a mean-field approach.</abstract><cop>Bristol</cop><pub>IOP Publishing</pub><doi>10.1088/1367-2630/16/10/103004</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-2630 |
ispartof | New journal of physics, 2014-10, Vol.16 (10), p.103004-17 |
issn | 1367-2630 1367-2630 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669870640 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Atomic properties atoms Balancing Binary mixtures Bose-Einstein condensate Bose-Einstein condensation bosonic mixtures Bosons Condensació de Bose-Einstein confinement Correlation Density Entanglement Entropy Extreme values fermions few-atom systems Física harmonic trap impenetrable bosons Interacting boson models Interacting boson-fermion models interacting bosons Interaction parameters macroscopic superpositions Mathematical analysis Mathematical models Monte Carlo simulation Parameter identification Phase diagrams Physics separation stability Tonks-Girardeau gas Àrees temàtiques de la UPC |
title | Quantum correlations and spatial localization in one-dimensional ultracold bosonic mixtures |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T12%3A59%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantum%20correlations%20and%20spatial%20localization%20in%20one-dimensional%20ultracold%20bosonic%20mixtures&rft.jtitle=New%20journal%20of%20physics&rft.au=Garc%C3%ADa-March,%20M%20A&rft.date=2014-10-07&rft.volume=16&rft.issue=10&rft.spage=103004&rft.epage=17&rft.pages=103004-17&rft.issn=1367-2630&rft.eissn=1367-2630&rft.coden=NJOPFM&rft_id=info:doi/10.1088/1367-2630/16/10/103004&rft_dat=%3Cproquest_doaj_%3E2312942362%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c581t-b377e93bc6f276cebc6671e1d1cf3e543f3f08c317bb15e4c980b10fc1929bb53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2312942362&rft_id=info:pmid/&rfr_iscdi=true |