Loading…

Numerical investigation the effects of working parameters on nucleate pool boiling

In the present paper the combination of three-dimensional isothermal and two-dimensional non-isothermal Lattice Boltzmann Method (LBM) are employed to simulate the nucleate pool boiling phenomenon. In order to validate the proposed model, rising bubble phenomenon is simulated afterward the boiling p...

Full description

Saved in:
Bibliographic Details
Published in:International communications in heat and mass transfer 2014-12, Vol.59, p.106-113
Main Authors: Sattari, E., Delavar, M.A., Fattahi, E., Sedighi, K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-398a6a843f3c3a6be65ddd6eee0b6916e32ba9f5ba9565a3f22070169b8b922b3
cites cdi_FETCH-LOGICAL-c412t-398a6a843f3c3a6be65ddd6eee0b6916e32ba9f5ba9565a3f22070169b8b922b3
container_end_page 113
container_issue
container_start_page 106
container_title International communications in heat and mass transfer
container_volume 59
creator Sattari, E.
Delavar, M.A.
Fattahi, E.
Sedighi, K.
description In the present paper the combination of three-dimensional isothermal and two-dimensional non-isothermal Lattice Boltzmann Method (LBM) are employed to simulate the nucleate pool boiling phenomenon. In order to validate the proposed model, rising bubble phenomenon is simulated afterward the boiling process is investigated by employing a function for heat transfer. The investigation is compared with other numerical works and is found to be in very good agreement. The effects of the parameters including contact angle, heat flux and heater length on departure dimensionless time and departure diameter of bubble are studied. The results show that departure diameter of bubble increases due to the increase of contact angle and decrease of gravity force. Formation, motion and breakup of the bubbles are also investigated as results of gravity force and heat flux. Furthermore, it is worthwhile pointing that out departure diameter of bubble increases as the heat flux increases and increasing of the heater length has more effect in comparison to heat flux on bubble growth. Transient regime is shown by increasing the contact angle and the small bubbles vanishing while rising upward at high gravity force.
doi_str_mv 10.1016/j.icheatmasstransfer.2014.10.004
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669872760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735193314002395</els_id><sourcerecordid>1669872760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-398a6a843f3c3a6be65ddd6eee0b6916e32ba9f5ba9565a3f22070169b8b922b3</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhC0EEqXwH3zsJcWPxIlvoIqnEEgIzpbjrFuXJA52UsS_x1W5ceGyK-2MRjsfQgtKlpRQcbldOrMBPXY6xjHoPloIS0ZonuQlIfkRmtGqlBmhZXWMZqTkRUYl56foLMYtIYRWtJqh1-epg-CMbrHrdxBHt9aj8z0eN4DBWjBjxN7iLx8-XL_Ggw66gxFCuva4n0ybfgA8eN_i2rs2ec7RidVthIvfPUfvtzdvq_vs6eXuYXX9lJmcsjHjstJCVzm33HAtahBF0zQCAEgtJBXAWa2lLdIoRKG5ZYyUqbmsq1oyVvM5Whxyh-A_p_S66lw00La6Bz9FRYWQVclKQZL16mA1wccYwKohuE6Hb0WJ2uNUW_UXp9rj3DsSzhTxeIiAVGnnkhqNg95A40KCpBrv_h_2A2vcjHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669872760</pqid></control><display><type>article</type><title>Numerical investigation the effects of working parameters on nucleate pool boiling</title><source>ScienceDirect Journals</source><creator>Sattari, E. ; Delavar, M.A. ; Fattahi, E. ; Sedighi, K.</creator><creatorcontrib>Sattari, E. ; Delavar, M.A. ; Fattahi, E. ; Sedighi, K.</creatorcontrib><description>In the present paper the combination of three-dimensional isothermal and two-dimensional non-isothermal Lattice Boltzmann Method (LBM) are employed to simulate the nucleate pool boiling phenomenon. In order to validate the proposed model, rising bubble phenomenon is simulated afterward the boiling process is investigated by employing a function for heat transfer. The investigation is compared with other numerical works and is found to be in very good agreement. The effects of the parameters including contact angle, heat flux and heater length on departure dimensionless time and departure diameter of bubble are studied. The results show that departure diameter of bubble increases due to the increase of contact angle and decrease of gravity force. Formation, motion and breakup of the bubbles are also investigated as results of gravity force and heat flux. Furthermore, it is worthwhile pointing that out departure diameter of bubble increases as the heat flux increases and increasing of the heater length has more effect in comparison to heat flux on bubble growth. Transient regime is shown by increasing the contact angle and the small bubbles vanishing while rising upward at high gravity force.</description><identifier>ISSN: 0735-1933</identifier><identifier>EISSN: 1879-0178</identifier><identifier>DOI: 10.1016/j.icheatmasstransfer.2014.10.004</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Boiling ; Bubbles ; Computer simulation ; Contact angle ; Departure diameter ; Gravitation ; Heat flux ; Heat transfer ; Heaters ; Lattice Boltzmann method (LBM) ; Mathematical models ; Nucleate pool boiling ; Two-phase fluid flows</subject><ispartof>International communications in heat and mass transfer, 2014-12, Vol.59, p.106-113</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-398a6a843f3c3a6be65ddd6eee0b6916e32ba9f5ba9565a3f22070169b8b922b3</citedby><cites>FETCH-LOGICAL-c412t-398a6a843f3c3a6be65ddd6eee0b6916e32ba9f5ba9565a3f22070169b8b922b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sattari, E.</creatorcontrib><creatorcontrib>Delavar, M.A.</creatorcontrib><creatorcontrib>Fattahi, E.</creatorcontrib><creatorcontrib>Sedighi, K.</creatorcontrib><title>Numerical investigation the effects of working parameters on nucleate pool boiling</title><title>International communications in heat and mass transfer</title><description>In the present paper the combination of three-dimensional isothermal and two-dimensional non-isothermal Lattice Boltzmann Method (LBM) are employed to simulate the nucleate pool boiling phenomenon. In order to validate the proposed model, rising bubble phenomenon is simulated afterward the boiling process is investigated by employing a function for heat transfer. The investigation is compared with other numerical works and is found to be in very good agreement. The effects of the parameters including contact angle, heat flux and heater length on departure dimensionless time and departure diameter of bubble are studied. The results show that departure diameter of bubble increases due to the increase of contact angle and decrease of gravity force. Formation, motion and breakup of the bubbles are also investigated as results of gravity force and heat flux. Furthermore, it is worthwhile pointing that out departure diameter of bubble increases as the heat flux increases and increasing of the heater length has more effect in comparison to heat flux on bubble growth. Transient regime is shown by increasing the contact angle and the small bubbles vanishing while rising upward at high gravity force.</description><subject>Boiling</subject><subject>Bubbles</subject><subject>Computer simulation</subject><subject>Contact angle</subject><subject>Departure diameter</subject><subject>Gravitation</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heaters</subject><subject>Lattice Boltzmann method (LBM)</subject><subject>Mathematical models</subject><subject>Nucleate pool boiling</subject><subject>Two-phase fluid flows</subject><issn>0735-1933</issn><issn>1879-0178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhC0EEqXwH3zsJcWPxIlvoIqnEEgIzpbjrFuXJA52UsS_x1W5ceGyK-2MRjsfQgtKlpRQcbldOrMBPXY6xjHoPloIS0ZonuQlIfkRmtGqlBmhZXWMZqTkRUYl56foLMYtIYRWtJqh1-epg-CMbrHrdxBHt9aj8z0eN4DBWjBjxN7iLx8-XL_Ggw66gxFCuva4n0ybfgA8eN_i2rs2ec7RidVthIvfPUfvtzdvq_vs6eXuYXX9lJmcsjHjstJCVzm33HAtahBF0zQCAEgtJBXAWa2lLdIoRKG5ZYyUqbmsq1oyVvM5Whxyh-A_p_S66lw00La6Bz9FRYWQVclKQZL16mA1wccYwKohuE6Hb0WJ2uNUW_UXp9rj3DsSzhTxeIiAVGnnkhqNg95A40KCpBrv_h_2A2vcjHc</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Sattari, E.</creator><creator>Delavar, M.A.</creator><creator>Fattahi, E.</creator><creator>Sedighi, K.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20141201</creationdate><title>Numerical investigation the effects of working parameters on nucleate pool boiling</title><author>Sattari, E. ; Delavar, M.A. ; Fattahi, E. ; Sedighi, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-398a6a843f3c3a6be65ddd6eee0b6916e32ba9f5ba9565a3f22070169b8b922b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boiling</topic><topic>Bubbles</topic><topic>Computer simulation</topic><topic>Contact angle</topic><topic>Departure diameter</topic><topic>Gravitation</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heaters</topic><topic>Lattice Boltzmann method (LBM)</topic><topic>Mathematical models</topic><topic>Nucleate pool boiling</topic><topic>Two-phase fluid flows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sattari, E.</creatorcontrib><creatorcontrib>Delavar, M.A.</creatorcontrib><creatorcontrib>Fattahi, E.</creatorcontrib><creatorcontrib>Sedighi, K.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International communications in heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sattari, E.</au><au>Delavar, M.A.</au><au>Fattahi, E.</au><au>Sedighi, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation the effects of working parameters on nucleate pool boiling</atitle><jtitle>International communications in heat and mass transfer</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>59</volume><spage>106</spage><epage>113</epage><pages>106-113</pages><issn>0735-1933</issn><eissn>1879-0178</eissn><abstract>In the present paper the combination of three-dimensional isothermal and two-dimensional non-isothermal Lattice Boltzmann Method (LBM) are employed to simulate the nucleate pool boiling phenomenon. In order to validate the proposed model, rising bubble phenomenon is simulated afterward the boiling process is investigated by employing a function for heat transfer. The investigation is compared with other numerical works and is found to be in very good agreement. The effects of the parameters including contact angle, heat flux and heater length on departure dimensionless time and departure diameter of bubble are studied. The results show that departure diameter of bubble increases due to the increase of contact angle and decrease of gravity force. Formation, motion and breakup of the bubbles are also investigated as results of gravity force and heat flux. Furthermore, it is worthwhile pointing that out departure diameter of bubble increases as the heat flux increases and increasing of the heater length has more effect in comparison to heat flux on bubble growth. Transient regime is shown by increasing the contact angle and the small bubbles vanishing while rising upward at high gravity force.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.icheatmasstransfer.2014.10.004</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0735-1933
ispartof International communications in heat and mass transfer, 2014-12, Vol.59, p.106-113
issn 0735-1933
1879-0178
language eng
recordid cdi_proquest_miscellaneous_1669872760
source ScienceDirect Journals
subjects Boiling
Bubbles
Computer simulation
Contact angle
Departure diameter
Gravitation
Heat flux
Heat transfer
Heaters
Lattice Boltzmann method (LBM)
Mathematical models
Nucleate pool boiling
Two-phase fluid flows
title Numerical investigation the effects of working parameters on nucleate pool boiling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20the%20effects%20of%20working%20parameters%20on%20nucleate%20pool%20boiling&rft.jtitle=International%20communications%20in%20heat%20and%20mass%20transfer&rft.au=Sattari,%20E.&rft.date=2014-12-01&rft.volume=59&rft.spage=106&rft.epage=113&rft.pages=106-113&rft.issn=0735-1933&rft.eissn=1879-0178&rft_id=info:doi/10.1016/j.icheatmasstransfer.2014.10.004&rft_dat=%3Cproquest_cross%3E1669872760%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-398a6a843f3c3a6be65ddd6eee0b6916e32ba9f5ba9565a3f22070169b8b922b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1669872760&rft_id=info:pmid/&rfr_iscdi=true