Loading…
Numerical investigation the effects of working parameters on nucleate pool boiling
In the present paper the combination of three-dimensional isothermal and two-dimensional non-isothermal Lattice Boltzmann Method (LBM) are employed to simulate the nucleate pool boiling phenomenon. In order to validate the proposed model, rising bubble phenomenon is simulated afterward the boiling p...
Saved in:
Published in: | International communications in heat and mass transfer 2014-12, Vol.59, p.106-113 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-398a6a843f3c3a6be65ddd6eee0b6916e32ba9f5ba9565a3f22070169b8b922b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-398a6a843f3c3a6be65ddd6eee0b6916e32ba9f5ba9565a3f22070169b8b922b3 |
container_end_page | 113 |
container_issue | |
container_start_page | 106 |
container_title | International communications in heat and mass transfer |
container_volume | 59 |
creator | Sattari, E. Delavar, M.A. Fattahi, E. Sedighi, K. |
description | In the present paper the combination of three-dimensional isothermal and two-dimensional non-isothermal Lattice Boltzmann Method (LBM) are employed to simulate the nucleate pool boiling phenomenon. In order to validate the proposed model, rising bubble phenomenon is simulated afterward the boiling process is investigated by employing a function for heat transfer. The investigation is compared with other numerical works and is found to be in very good agreement. The effects of the parameters including contact angle, heat flux and heater length on departure dimensionless time and departure diameter of bubble are studied. The results show that departure diameter of bubble increases due to the increase of contact angle and decrease of gravity force. Formation, motion and breakup of the bubbles are also investigated as results of gravity force and heat flux. Furthermore, it is worthwhile pointing that out departure diameter of bubble increases as the heat flux increases and increasing of the heater length has more effect in comparison to heat flux on bubble growth. Transient regime is shown by increasing the contact angle and the small bubbles vanishing while rising upward at high gravity force. |
doi_str_mv | 10.1016/j.icheatmasstransfer.2014.10.004 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669872760</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0735193314002395</els_id><sourcerecordid>1669872760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-398a6a843f3c3a6be65ddd6eee0b6916e32ba9f5ba9565a3f22070169b8b922b3</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhC0EEqXwH3zsJcWPxIlvoIqnEEgIzpbjrFuXJA52UsS_x1W5ceGyK-2MRjsfQgtKlpRQcbldOrMBPXY6xjHoPloIS0ZonuQlIfkRmtGqlBmhZXWMZqTkRUYl56foLMYtIYRWtJqh1-epg-CMbrHrdxBHt9aj8z0eN4DBWjBjxN7iLx8-XL_Ggw66gxFCuva4n0ybfgA8eN_i2rs2ec7RidVthIvfPUfvtzdvq_vs6eXuYXX9lJmcsjHjstJCVzm33HAtahBF0zQCAEgtJBXAWa2lLdIoRKG5ZYyUqbmsq1oyVvM5Whxyh-A_p_S66lw00La6Bz9FRYWQVclKQZL16mA1wccYwKohuE6Hb0WJ2uNUW_UXp9rj3DsSzhTxeIiAVGnnkhqNg95A40KCpBrv_h_2A2vcjHc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669872760</pqid></control><display><type>article</type><title>Numerical investigation the effects of working parameters on nucleate pool boiling</title><source>ScienceDirect Journals</source><creator>Sattari, E. ; Delavar, M.A. ; Fattahi, E. ; Sedighi, K.</creator><creatorcontrib>Sattari, E. ; Delavar, M.A. ; Fattahi, E. ; Sedighi, K.</creatorcontrib><description>In the present paper the combination of three-dimensional isothermal and two-dimensional non-isothermal Lattice Boltzmann Method (LBM) are employed to simulate the nucleate pool boiling phenomenon. In order to validate the proposed model, rising bubble phenomenon is simulated afterward the boiling process is investigated by employing a function for heat transfer. The investigation is compared with other numerical works and is found to be in very good agreement. The effects of the parameters including contact angle, heat flux and heater length on departure dimensionless time and departure diameter of bubble are studied. The results show that departure diameter of bubble increases due to the increase of contact angle and decrease of gravity force. Formation, motion and breakup of the bubbles are also investigated as results of gravity force and heat flux. Furthermore, it is worthwhile pointing that out departure diameter of bubble increases as the heat flux increases and increasing of the heater length has more effect in comparison to heat flux on bubble growth. Transient regime is shown by increasing the contact angle and the small bubbles vanishing while rising upward at high gravity force.</description><identifier>ISSN: 0735-1933</identifier><identifier>EISSN: 1879-0178</identifier><identifier>DOI: 10.1016/j.icheatmasstransfer.2014.10.004</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Boiling ; Bubbles ; Computer simulation ; Contact angle ; Departure diameter ; Gravitation ; Heat flux ; Heat transfer ; Heaters ; Lattice Boltzmann method (LBM) ; Mathematical models ; Nucleate pool boiling ; Two-phase fluid flows</subject><ispartof>International communications in heat and mass transfer, 2014-12, Vol.59, p.106-113</ispartof><rights>2014 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-398a6a843f3c3a6be65ddd6eee0b6916e32ba9f5ba9565a3f22070169b8b922b3</citedby><cites>FETCH-LOGICAL-c412t-398a6a843f3c3a6be65ddd6eee0b6916e32ba9f5ba9565a3f22070169b8b922b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Sattari, E.</creatorcontrib><creatorcontrib>Delavar, M.A.</creatorcontrib><creatorcontrib>Fattahi, E.</creatorcontrib><creatorcontrib>Sedighi, K.</creatorcontrib><title>Numerical investigation the effects of working parameters on nucleate pool boiling</title><title>International communications in heat and mass transfer</title><description>In the present paper the combination of three-dimensional isothermal and two-dimensional non-isothermal Lattice Boltzmann Method (LBM) are employed to simulate the nucleate pool boiling phenomenon. In order to validate the proposed model, rising bubble phenomenon is simulated afterward the boiling process is investigated by employing a function for heat transfer. The investigation is compared with other numerical works and is found to be in very good agreement. The effects of the parameters including contact angle, heat flux and heater length on departure dimensionless time and departure diameter of bubble are studied. The results show that departure diameter of bubble increases due to the increase of contact angle and decrease of gravity force. Formation, motion and breakup of the bubbles are also investigated as results of gravity force and heat flux. Furthermore, it is worthwhile pointing that out departure diameter of bubble increases as the heat flux increases and increasing of the heater length has more effect in comparison to heat flux on bubble growth. Transient regime is shown by increasing the contact angle and the small bubbles vanishing while rising upward at high gravity force.</description><subject>Boiling</subject><subject>Bubbles</subject><subject>Computer simulation</subject><subject>Contact angle</subject><subject>Departure diameter</subject><subject>Gravitation</subject><subject>Heat flux</subject><subject>Heat transfer</subject><subject>Heaters</subject><subject>Lattice Boltzmann method (LBM)</subject><subject>Mathematical models</subject><subject>Nucleate pool boiling</subject><subject>Two-phase fluid flows</subject><issn>0735-1933</issn><issn>1879-0178</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhC0EEqXwH3zsJcWPxIlvoIqnEEgIzpbjrFuXJA52UsS_x1W5ceGyK-2MRjsfQgtKlpRQcbldOrMBPXY6xjHoPloIS0ZonuQlIfkRmtGqlBmhZXWMZqTkRUYl56foLMYtIYRWtJqh1-epg-CMbrHrdxBHt9aj8z0eN4DBWjBjxN7iLx8-XL_Ggw66gxFCuva4n0ybfgA8eN_i2rs2ec7RidVthIvfPUfvtzdvq_vs6eXuYXX9lJmcsjHjstJCVzm33HAtahBF0zQCAEgtJBXAWa2lLdIoRKG5ZYyUqbmsq1oyVvM5Whxyh-A_p_S66lw00La6Bz9FRYWQVclKQZL16mA1wccYwKohuE6Hb0WJ2uNUW_UXp9rj3DsSzhTxeIiAVGnnkhqNg95A40KCpBrv_h_2A2vcjHc</recordid><startdate>20141201</startdate><enddate>20141201</enddate><creator>Sattari, E.</creator><creator>Delavar, M.A.</creator><creator>Fattahi, E.</creator><creator>Sedighi, K.</creator><general>Elsevier Ltd</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20141201</creationdate><title>Numerical investigation the effects of working parameters on nucleate pool boiling</title><author>Sattari, E. ; Delavar, M.A. ; Fattahi, E. ; Sedighi, K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-398a6a843f3c3a6be65ddd6eee0b6916e32ba9f5ba9565a3f22070169b8b922b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Boiling</topic><topic>Bubbles</topic><topic>Computer simulation</topic><topic>Contact angle</topic><topic>Departure diameter</topic><topic>Gravitation</topic><topic>Heat flux</topic><topic>Heat transfer</topic><topic>Heaters</topic><topic>Lattice Boltzmann method (LBM)</topic><topic>Mathematical models</topic><topic>Nucleate pool boiling</topic><topic>Two-phase fluid flows</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sattari, E.</creatorcontrib><creatorcontrib>Delavar, M.A.</creatorcontrib><creatorcontrib>Fattahi, E.</creatorcontrib><creatorcontrib>Sedighi, K.</creatorcontrib><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International communications in heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sattari, E.</au><au>Delavar, M.A.</au><au>Fattahi, E.</au><au>Sedighi, K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Numerical investigation the effects of working parameters on nucleate pool boiling</atitle><jtitle>International communications in heat and mass transfer</jtitle><date>2014-12-01</date><risdate>2014</risdate><volume>59</volume><spage>106</spage><epage>113</epage><pages>106-113</pages><issn>0735-1933</issn><eissn>1879-0178</eissn><abstract>In the present paper the combination of three-dimensional isothermal and two-dimensional non-isothermal Lattice Boltzmann Method (LBM) are employed to simulate the nucleate pool boiling phenomenon. In order to validate the proposed model, rising bubble phenomenon is simulated afterward the boiling process is investigated by employing a function for heat transfer. The investigation is compared with other numerical works and is found to be in very good agreement. The effects of the parameters including contact angle, heat flux and heater length on departure dimensionless time and departure diameter of bubble are studied. The results show that departure diameter of bubble increases due to the increase of contact angle and decrease of gravity force. Formation, motion and breakup of the bubbles are also investigated as results of gravity force and heat flux. Furthermore, it is worthwhile pointing that out departure diameter of bubble increases as the heat flux increases and increasing of the heater length has more effect in comparison to heat flux on bubble growth. Transient regime is shown by increasing the contact angle and the small bubbles vanishing while rising upward at high gravity force.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.icheatmasstransfer.2014.10.004</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0735-1933 |
ispartof | International communications in heat and mass transfer, 2014-12, Vol.59, p.106-113 |
issn | 0735-1933 1879-0178 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669872760 |
source | ScienceDirect Journals |
subjects | Boiling Bubbles Computer simulation Contact angle Departure diameter Gravitation Heat flux Heat transfer Heaters Lattice Boltzmann method (LBM) Mathematical models Nucleate pool boiling Two-phase fluid flows |
title | Numerical investigation the effects of working parameters on nucleate pool boiling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T16%3A34%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Numerical%20investigation%20the%20effects%20of%20working%20parameters%20on%20nucleate%20pool%20boiling&rft.jtitle=International%20communications%20in%20heat%20and%20mass%20transfer&rft.au=Sattari,%20E.&rft.date=2014-12-01&rft.volume=59&rft.spage=106&rft.epage=113&rft.pages=106-113&rft.issn=0735-1933&rft.eissn=1879-0178&rft_id=info:doi/10.1016/j.icheatmasstransfer.2014.10.004&rft_dat=%3Cproquest_cross%3E1669872760%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-398a6a843f3c3a6be65ddd6eee0b6916e32ba9f5ba9565a3f22070169b8b922b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1669872760&rft_id=info:pmid/&rfr_iscdi=true |