Loading…

A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh

SummaryThis paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during opt...

Full description

Saved in:
Bibliographic Details
Published in:International journal for numerical methods in engineering 2015-03, Vol.101 (10), p.744-773
Main Authors: Yamasaki, Shintaro, Kawamoto, Atsushi, Nomura, Tsuyoshi, Fujita, Kikuo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c4306-b027afc26a9e1767f6b6fe1b098cc597208c0ad63b983953617883b091b33d993
cites cdi_FETCH-LOGICAL-c4306-b027afc26a9e1767f6b6fe1b098cc597208c0ad63b983953617883b091b33d993
container_end_page 773
container_issue 10
container_start_page 744
container_title International journal for numerical methods in engineering
container_volume 101
creator Yamasaki, Shintaro
Kawamoto, Atsushi
Nomura, Tsuyoshi
Fujita, Kikuo
description SummaryThis paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during optimization; therefore, structural design problems are solved completely without grayscale material. Previously, we introduced the boundary tracking mesh generating method into level‐set based topology optimization and updated the design variables by solving the level‐set equation. In order to adapt our previous method to general structural optimization frameworks, the incorporation of the method with nonlinear programming is investigated in this paper. To successfully incorporate nonlinear programming, the optimization problem is regularized using a double‐well potential. Furthermore, the sensitivities with respect to the design variables are strictly derived to maintain consistency in mathematical programming. We expect the investigation to open up a new class of grayscale‐free topology optimization. The usefulness of the proposed method is demonstrated using several numerical examples targeting two‐dimensional compliant mechanism and metallic waveguide design problems. Copyright © 2014 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/nme.4826
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669873039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3566960781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4306-b027afc26a9e1767f6b6fe1b098cc597208c0ad63b983953617883b091b33d993</originalsourceid><addsrcrecordid>eNp1kc1O3DAURq2qSJ1CpT6CpW7YGOx4YsdLQHSAwnQzVZeW49zMBBJ7sJ1CeHoSaKlAYnUX59w_fQh9ZfSAUZodug4O5kUmPqAZo0oSmlH5Ec1GpEiuCvYJfY7xmlLGcspnaDjC1rvYxAQu4XUwQ7SmBVIHAJz81rd-PWC_TU3XPJjUeIc7SBtf4T42bo3TBnALf6AlEdI_ZFyFHyB48kRw6XtXmTDgFIy9mbo6iJs9tFObNsKXv3UX_fp-ujo5I5c_F-cnR5fEzjkVpKSZNLXNhFHApJC1KEUNrKSqsDZXMqOFpaYSvFQFVzkXTBYFHzErOa-U4rto_3nuNvjbHmLSXRMttK1x4PuomRCqkJzySf32Rr32fXDjdaM1l3I-bfs_0AYfY4Bab0PTjf9pRvWUgR4z0FMGo0qe1bumheFdTy-vTl_7Ux73L74JN1pILnP9e7nQK7H4sVzxC33MHwF2NJf_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647747208</pqid></control><display><type>article</type><title>A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh</title><source>Wiley</source><creator>Yamasaki, Shintaro ; Kawamoto, Atsushi ; Nomura, Tsuyoshi ; Fujita, Kikuo</creator><creatorcontrib>Yamasaki, Shintaro ; Kawamoto, Atsushi ; Nomura, Tsuyoshi ; Fujita, Kikuo</creatorcontrib><description>SummaryThis paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during optimization; therefore, structural design problems are solved completely without grayscale material. Previously, we introduced the boundary tracking mesh generating method into level‐set based topology optimization and updated the design variables by solving the level‐set equation. In order to adapt our previous method to general structural optimization frameworks, the incorporation of the method with nonlinear programming is investigated in this paper. To successfully incorporate nonlinear programming, the optimization problem is regularized using a double‐well potential. Furthermore, the sensitivities with respect to the design variables are strictly derived to maintain consistency in mathematical programming. We expect the investigation to open up a new class of grayscale‐free topology optimization. The usefulness of the proposed method is demonstrated using several numerical examples targeting two‐dimensional compliant mechanism and metallic waveguide design problems. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.4826</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Boundaries ; boundary tracking mesh ; double-well potential ; level-set method ; Mathematical analysis ; Mathematical models ; Mesh generation ; Nonlinear programming ; Optimization ; Topology optimization ; Tracking</subject><ispartof>International journal for numerical methods in engineering, 2015-03, Vol.101 (10), p.744-773</ispartof><rights>Copyright © 2014 John Wiley &amp; Sons, Ltd.</rights><rights>Copyright © 2015 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4306-b027afc26a9e1767f6b6fe1b098cc597208c0ad63b983953617883b091b33d993</citedby><cites>FETCH-LOGICAL-c4306-b027afc26a9e1767f6b6fe1b098cc597208c0ad63b983953617883b091b33d993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yamasaki, Shintaro</creatorcontrib><creatorcontrib>Kawamoto, Atsushi</creatorcontrib><creatorcontrib>Nomura, Tsuyoshi</creatorcontrib><creatorcontrib>Fujita, Kikuo</creatorcontrib><title>A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>SummaryThis paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during optimization; therefore, structural design problems are solved completely without grayscale material. Previously, we introduced the boundary tracking mesh generating method into level‐set based topology optimization and updated the design variables by solving the level‐set equation. In order to adapt our previous method to general structural optimization frameworks, the incorporation of the method with nonlinear programming is investigated in this paper. To successfully incorporate nonlinear programming, the optimization problem is regularized using a double‐well potential. Furthermore, the sensitivities with respect to the design variables are strictly derived to maintain consistency in mathematical programming. We expect the investigation to open up a new class of grayscale‐free topology optimization. The usefulness of the proposed method is demonstrated using several numerical examples targeting two‐dimensional compliant mechanism and metallic waveguide design problems. Copyright © 2014 John Wiley &amp; Sons, Ltd.</description><subject>Boundaries</subject><subject>boundary tracking mesh</subject><subject>double-well potential</subject><subject>level-set method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mesh generation</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Topology optimization</subject><subject>Tracking</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kc1O3DAURq2qSJ1CpT6CpW7YGOx4YsdLQHSAwnQzVZeW49zMBBJ7sJ1CeHoSaKlAYnUX59w_fQh9ZfSAUZodug4O5kUmPqAZo0oSmlH5Ec1GpEiuCvYJfY7xmlLGcspnaDjC1rvYxAQu4XUwQ7SmBVIHAJz81rd-PWC_TU3XPJjUeIc7SBtf4T42bo3TBnALf6AlEdI_ZFyFHyB48kRw6XtXmTDgFIy9mbo6iJs9tFObNsKXv3UX_fp-ujo5I5c_F-cnR5fEzjkVpKSZNLXNhFHApJC1KEUNrKSqsDZXMqOFpaYSvFQFVzkXTBYFHzErOa-U4rto_3nuNvjbHmLSXRMttK1x4PuomRCqkJzySf32Rr32fXDjdaM1l3I-bfs_0AYfY4Bab0PTjf9pRvWUgR4z0FMGo0qe1bumheFdTy-vTl_7Ux73L74JN1pILnP9e7nQK7H4sVzxC33MHwF2NJf_</recordid><startdate>20150309</startdate><enddate>20150309</enddate><creator>Yamasaki, Shintaro</creator><creator>Kawamoto, Atsushi</creator><creator>Nomura, Tsuyoshi</creator><creator>Fujita, Kikuo</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150309</creationdate><title>A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh</title><author>Yamasaki, Shintaro ; Kawamoto, Atsushi ; Nomura, Tsuyoshi ; Fujita, Kikuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4306-b027afc26a9e1767f6b6fe1b098cc597208c0ad63b983953617883b091b33d993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundaries</topic><topic>boundary tracking mesh</topic><topic>double-well potential</topic><topic>level-set method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mesh generation</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Topology optimization</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamasaki, Shintaro</creatorcontrib><creatorcontrib>Kawamoto, Atsushi</creatorcontrib><creatorcontrib>Nomura, Tsuyoshi</creatorcontrib><creatorcontrib>Fujita, Kikuo</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamasaki, Shintaro</au><au>Kawamoto, Atsushi</au><au>Nomura, Tsuyoshi</au><au>Fujita, Kikuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2015-03-09</date><risdate>2015</risdate><volume>101</volume><issue>10</issue><spage>744</spage><epage>773</epage><pages>744-773</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>SummaryThis paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during optimization; therefore, structural design problems are solved completely without grayscale material. Previously, we introduced the boundary tracking mesh generating method into level‐set based topology optimization and updated the design variables by solving the level‐set equation. In order to adapt our previous method to general structural optimization frameworks, the incorporation of the method with nonlinear programming is investigated in this paper. To successfully incorporate nonlinear programming, the optimization problem is regularized using a double‐well potential. Furthermore, the sensitivities with respect to the design variables are strictly derived to maintain consistency in mathematical programming. We expect the investigation to open up a new class of grayscale‐free topology optimization. The usefulness of the proposed method is demonstrated using several numerical examples targeting two‐dimensional compliant mechanism and metallic waveguide design problems. Copyright © 2014 John Wiley &amp; Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nme.4826</doi><tpages>30</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0029-5981
ispartof International journal for numerical methods in engineering, 2015-03, Vol.101 (10), p.744-773
issn 0029-5981
1097-0207
language eng
recordid cdi_proquest_miscellaneous_1669873039
source Wiley
subjects Boundaries
boundary tracking mesh
double-well potential
level-set method
Mathematical analysis
Mathematical models
Mesh generation
Nonlinear programming
Optimization
Topology optimization
Tracking
title A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20consistent%20grayscale-free%20topology%20optimization%20method%20using%20the%20level-set%20method%20and%20zero-level%20boundary%20tracking%20mesh&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Yamasaki,%20Shintaro&rft.date=2015-03-09&rft.volume=101&rft.issue=10&rft.spage=744&rft.epage=773&rft.pages=744-773&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.4826&rft_dat=%3Cproquest_cross%3E3566960781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4306-b027afc26a9e1767f6b6fe1b098cc597208c0ad63b983953617883b091b33d993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1647747208&rft_id=info:pmid/&rfr_iscdi=true