Loading…
A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh
SummaryThis paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during opt...
Saved in:
Published in: | International journal for numerical methods in engineering 2015-03, Vol.101 (10), p.744-773 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c4306-b027afc26a9e1767f6b6fe1b098cc597208c0ad63b983953617883b091b33d993 |
---|---|
cites | cdi_FETCH-LOGICAL-c4306-b027afc26a9e1767f6b6fe1b098cc597208c0ad63b983953617883b091b33d993 |
container_end_page | 773 |
container_issue | 10 |
container_start_page | 744 |
container_title | International journal for numerical methods in engineering |
container_volume | 101 |
creator | Yamasaki, Shintaro Kawamoto, Atsushi Nomura, Tsuyoshi Fujita, Kikuo |
description | SummaryThis paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during optimization; therefore, structural design problems are solved completely without grayscale material. Previously, we introduced the boundary tracking mesh generating method into level‐set based topology optimization and updated the design variables by solving the level‐set equation. In order to adapt our previous method to general structural optimization frameworks, the incorporation of the method with nonlinear programming is investigated in this paper. To successfully incorporate nonlinear programming, the optimization problem is regularized using a double‐well potential. Furthermore, the sensitivities with respect to the design variables are strictly derived to maintain consistency in mathematical programming. We expect the investigation to open up a new class of grayscale‐free topology optimization. The usefulness of the proposed method is demonstrated using several numerical examples targeting two‐dimensional compliant mechanism and metallic waveguide design problems. Copyright © 2014 John Wiley & Sons, Ltd. |
doi_str_mv | 10.1002/nme.4826 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669873039</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>3566960781</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4306-b027afc26a9e1767f6b6fe1b098cc597208c0ad63b983953617883b091b33d993</originalsourceid><addsrcrecordid>eNp1kc1O3DAURq2qSJ1CpT6CpW7YGOx4YsdLQHSAwnQzVZeW49zMBBJ7sJ1CeHoSaKlAYnUX59w_fQh9ZfSAUZodug4O5kUmPqAZo0oSmlH5Ec1GpEiuCvYJfY7xmlLGcspnaDjC1rvYxAQu4XUwQ7SmBVIHAJz81rd-PWC_TU3XPJjUeIc7SBtf4T42bo3TBnALf6AlEdI_ZFyFHyB48kRw6XtXmTDgFIy9mbo6iJs9tFObNsKXv3UX_fp-ujo5I5c_F-cnR5fEzjkVpKSZNLXNhFHApJC1KEUNrKSqsDZXMqOFpaYSvFQFVzkXTBYFHzErOa-U4rto_3nuNvjbHmLSXRMttK1x4PuomRCqkJzySf32Rr32fXDjdaM1l3I-bfs_0AYfY4Bab0PTjf9pRvWUgR4z0FMGo0qe1bumheFdTy-vTl_7Ux73L74JN1pILnP9e7nQK7H4sVzxC33MHwF2NJf_</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1647747208</pqid></control><display><type>article</type><title>A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh</title><source>Wiley</source><creator>Yamasaki, Shintaro ; Kawamoto, Atsushi ; Nomura, Tsuyoshi ; Fujita, Kikuo</creator><creatorcontrib>Yamasaki, Shintaro ; Kawamoto, Atsushi ; Nomura, Tsuyoshi ; Fujita, Kikuo</creatorcontrib><description>SummaryThis paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during optimization; therefore, structural design problems are solved completely without grayscale material. Previously, we introduced the boundary tracking mesh generating method into level‐set based topology optimization and updated the design variables by solving the level‐set equation. In order to adapt our previous method to general structural optimization frameworks, the incorporation of the method with nonlinear programming is investigated in this paper. To successfully incorporate nonlinear programming, the optimization problem is regularized using a double‐well potential. Furthermore, the sensitivities with respect to the design variables are strictly derived to maintain consistency in mathematical programming. We expect the investigation to open up a new class of grayscale‐free topology optimization. The usefulness of the proposed method is demonstrated using several numerical examples targeting two‐dimensional compliant mechanism and metallic waveguide design problems. Copyright © 2014 John Wiley & Sons, Ltd.</description><identifier>ISSN: 0029-5981</identifier><identifier>EISSN: 1097-0207</identifier><identifier>DOI: 10.1002/nme.4826</identifier><identifier>CODEN: IJNMBH</identifier><language>eng</language><publisher>Bognor Regis: Blackwell Publishing Ltd</publisher><subject>Boundaries ; boundary tracking mesh ; double-well potential ; level-set method ; Mathematical analysis ; Mathematical models ; Mesh generation ; Nonlinear programming ; Optimization ; Topology optimization ; Tracking</subject><ispartof>International journal for numerical methods in engineering, 2015-03, Vol.101 (10), p.744-773</ispartof><rights>Copyright © 2014 John Wiley & Sons, Ltd.</rights><rights>Copyright © 2015 John Wiley & Sons, Ltd.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4306-b027afc26a9e1767f6b6fe1b098cc597208c0ad63b983953617883b091b33d993</citedby><cites>FETCH-LOGICAL-c4306-b027afc26a9e1767f6b6fe1b098cc597208c0ad63b983953617883b091b33d993</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>Yamasaki, Shintaro</creatorcontrib><creatorcontrib>Kawamoto, Atsushi</creatorcontrib><creatorcontrib>Nomura, Tsuyoshi</creatorcontrib><creatorcontrib>Fujita, Kikuo</creatorcontrib><title>A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh</title><title>International journal for numerical methods in engineering</title><addtitle>Int. J. Numer. Meth. Engng</addtitle><description>SummaryThis paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during optimization; therefore, structural design problems are solved completely without grayscale material. Previously, we introduced the boundary tracking mesh generating method into level‐set based topology optimization and updated the design variables by solving the level‐set equation. In order to adapt our previous method to general structural optimization frameworks, the incorporation of the method with nonlinear programming is investigated in this paper. To successfully incorporate nonlinear programming, the optimization problem is regularized using a double‐well potential. Furthermore, the sensitivities with respect to the design variables are strictly derived to maintain consistency in mathematical programming. We expect the investigation to open up a new class of grayscale‐free topology optimization. The usefulness of the proposed method is demonstrated using several numerical examples targeting two‐dimensional compliant mechanism and metallic waveguide design problems. Copyright © 2014 John Wiley & Sons, Ltd.</description><subject>Boundaries</subject><subject>boundary tracking mesh</subject><subject>double-well potential</subject><subject>level-set method</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mesh generation</subject><subject>Nonlinear programming</subject><subject>Optimization</subject><subject>Topology optimization</subject><subject>Tracking</subject><issn>0029-5981</issn><issn>1097-0207</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNp1kc1O3DAURq2qSJ1CpT6CpW7YGOx4YsdLQHSAwnQzVZeW49zMBBJ7sJ1CeHoSaKlAYnUX59w_fQh9ZfSAUZodug4O5kUmPqAZo0oSmlH5Ec1GpEiuCvYJfY7xmlLGcspnaDjC1rvYxAQu4XUwQ7SmBVIHAJz81rd-PWC_TU3XPJjUeIc7SBtf4T42bo3TBnALf6AlEdI_ZFyFHyB48kRw6XtXmTDgFIy9mbo6iJs9tFObNsKXv3UX_fp-ujo5I5c_F-cnR5fEzjkVpKSZNLXNhFHApJC1KEUNrKSqsDZXMqOFpaYSvFQFVzkXTBYFHzErOa-U4rto_3nuNvjbHmLSXRMttK1x4PuomRCqkJzySf32Rr32fXDjdaM1l3I-bfs_0AYfY4Bab0PTjf9pRvWUgR4z0FMGo0qe1bumheFdTy-vTl_7Ux73L74JN1pILnP9e7nQK7H4sVzxC33MHwF2NJf_</recordid><startdate>20150309</startdate><enddate>20150309</enddate><creator>Yamasaki, Shintaro</creator><creator>Kawamoto, Atsushi</creator><creator>Nomura, Tsuyoshi</creator><creator>Fujita, Kikuo</creator><general>Blackwell Publishing Ltd</general><general>Wiley Subscription Services, Inc</general><scope>BSCLL</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20150309</creationdate><title>A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh</title><author>Yamasaki, Shintaro ; Kawamoto, Atsushi ; Nomura, Tsuyoshi ; Fujita, Kikuo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4306-b027afc26a9e1767f6b6fe1b098cc597208c0ad63b983953617883b091b33d993</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Boundaries</topic><topic>boundary tracking mesh</topic><topic>double-well potential</topic><topic>level-set method</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mesh generation</topic><topic>Nonlinear programming</topic><topic>Optimization</topic><topic>Topology optimization</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yamasaki, Shintaro</creatorcontrib><creatorcontrib>Kawamoto, Atsushi</creatorcontrib><creatorcontrib>Nomura, Tsuyoshi</creatorcontrib><creatorcontrib>Fujita, Kikuo</creatorcontrib><collection>Istex</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal for numerical methods in engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yamasaki, Shintaro</au><au>Kawamoto, Atsushi</au><au>Nomura, Tsuyoshi</au><au>Fujita, Kikuo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh</atitle><jtitle>International journal for numerical methods in engineering</jtitle><addtitle>Int. J. Numer. Meth. Engng</addtitle><date>2015-03-09</date><risdate>2015</risdate><volume>101</volume><issue>10</issue><spage>744</spage><epage>773</epage><pages>744-773</pages><issn>0029-5981</issn><eissn>1097-0207</eissn><coden>IJNMBH</coden><abstract>SummaryThis paper proposes a level‐set based topology optimization method incorporating a boundary tracking mesh generating method and nonlinear programming. Because the boundary tracking mesh is always conformed to the structural boundary, good approximation to the boundary is maintained during optimization; therefore, structural design problems are solved completely without grayscale material. Previously, we introduced the boundary tracking mesh generating method into level‐set based topology optimization and updated the design variables by solving the level‐set equation. In order to adapt our previous method to general structural optimization frameworks, the incorporation of the method with nonlinear programming is investigated in this paper. To successfully incorporate nonlinear programming, the optimization problem is regularized using a double‐well potential. Furthermore, the sensitivities with respect to the design variables are strictly derived to maintain consistency in mathematical programming. We expect the investigation to open up a new class of grayscale‐free topology optimization. The usefulness of the proposed method is demonstrated using several numerical examples targeting two‐dimensional compliant mechanism and metallic waveguide design problems. Copyright © 2014 John Wiley & Sons, Ltd.</abstract><cop>Bognor Regis</cop><pub>Blackwell Publishing Ltd</pub><doi>10.1002/nme.4826</doi><tpages>30</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0029-5981 |
ispartof | International journal for numerical methods in engineering, 2015-03, Vol.101 (10), p.744-773 |
issn | 0029-5981 1097-0207 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669873039 |
source | Wiley |
subjects | Boundaries boundary tracking mesh double-well potential level-set method Mathematical analysis Mathematical models Mesh generation Nonlinear programming Optimization Topology optimization Tracking |
title | A consistent grayscale-free topology optimization method using the level-set method and zero-level boundary tracking mesh |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A43%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20consistent%20grayscale-free%20topology%20optimization%20method%20using%20the%20level-set%20method%20and%20zero-level%20boundary%20tracking%20mesh&rft.jtitle=International%20journal%20for%20numerical%20methods%20in%20engineering&rft.au=Yamasaki,%20Shintaro&rft.date=2015-03-09&rft.volume=101&rft.issue=10&rft.spage=744&rft.epage=773&rft.pages=744-773&rft.issn=0029-5981&rft.eissn=1097-0207&rft.coden=IJNMBH&rft_id=info:doi/10.1002/nme.4826&rft_dat=%3Cproquest_cross%3E3566960781%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4306-b027afc26a9e1767f6b6fe1b098cc597208c0ad63b983953617883b091b33d993%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1647747208&rft_id=info:pmid/&rfr_iscdi=true |