Loading…

Blended skip entry guidance for low-lifting lunar return vehicles

A skip entry guidance algorithm blending numerical predictor-corrector and nominal trajectory tracking is presented for lunar return vehicles.The guidance is decoupled into longitudinal and lateral channels.A piecewise bank-vs-energy magnitude profile and a sign profile are adopted in the skip phase...

Full description

Saved in:
Bibliographic Details
Published in:Acta mechanica Sinica 2014-12, Vol.30 (6), p.973-982
Main Authors: Luo, Zong-Fu, Zhang, Hong-Bo, Tang, Guo-Jian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A skip entry guidance algorithm blending numerical predictor-corrector and nominal trajectory tracking is presented for lunar return vehicles.The guidance is decoupled into longitudinal and lateral channels.A piecewise bank-vs-energy magnitude profile and a sign profile are adopted in the skip phase.A magnitude parameter is used to adjust the predicted downrange,and a pseudo-crossrange at the beginning of the final phase is selected as the lateral control variable.Prediction biases of both channels are nullified by a false position iteration algorithm.An on-line estimation and modeling method is introduced to compensate for aerodynamic and atmospheric uncertainties.A nominal trajectory for the final phase is generated based on actual reenter conditions,and the obtained nominal trajectory is tracked by a linear feedback law.A lateral corridor is used to manage the lateral state.The proposed guidance algorithm is assessed using three-degree-of-freedom Monte Carlo analyses,and the results show a satisfactory and robust performance under highly stressful dispersions.
ISSN:0567-7718
1614-3116
DOI:10.1007/s10409-014-0086-x