Loading…

Minimal entropy approximation for cellular automata

We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with...

Full description

Saved in:
Bibliographic Details
Published in:Journal of statistical mechanics 2014-02, Vol.2014 (2), p.P02009-20
Main Author: Fuk, Henryk
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c282t-436c286ce9ad60397b20d7425793f7da176537980270e8ee144526488d7355f73
container_end_page 20
container_issue 2
container_start_page P02009
container_title Journal of statistical mechanics
container_volume 2014
creator Fuk, Henryk
description We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim.
doi_str_mv 10.1088/1742-5468/2014/02/P02009
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669887642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669887642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-436c286ce9ad60397b20d7425793f7da176537980270e8ee144526488d7355f73</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-hxy91E6-k6MsfsGKHnbPIbYpdOk2NWnB_femVMSbp3mZmXd450EIE7gjoHVJFKeF4FKXFAgvgZbvQAHMGVr9js7_6Et0ldIBgFHgeoXYa9u3R9dh348xDCfshiGGr9wa29DjJkRc-a6bOhexm8aQ--4aXTSuS_7mp67R_vFht3kutm9PL5v7bVFRTceCM5mFrLxxtQRm1AeFOscQyrBG1Y4oKZgyGqgCr70nnAsquda1YkI0iq3R7XI3J_qcfBrtsU1zGtf7MCVLpDRaK8lpXtXLahVDStE3doj5h3iyBOzMyc4A7AzAzpwsULtwyla-WNsw2EOYYp9_-t_2DazLaOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669887642</pqid></control><display><type>article</type><title>Minimal entropy approximation for cellular automata</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Fuk, Henryk</creator><creatorcontrib>Fuk, Henryk</creatorcontrib><description>We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim.</description><identifier>ISSN: 1742-5468</identifier><identifier>EISSN: 1742-5468</identifier><identifier>DOI: 10.1088/1742-5468/2014/02/P02009</identifier><identifier>CODEN: JSMTC6</identifier><language>eng</language><publisher>IOP Publishing and SISSA</publisher><subject>Approximation ; Cellular automata ; Construction ; Density ; Entropy ; Mathematical analysis ; Orbits</subject><ispartof>Journal of statistical mechanics, 2014-02, Vol.2014 (2), p.P02009-20</ispartof><rights>2014 IOP Publishing Ltd and SISSA Medialab srl</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-436c286ce9ad60397b20d7425793f7da176537980270e8ee144526488d7355f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Fuk, Henryk</creatorcontrib><title>Minimal entropy approximation for cellular automata</title><title>Journal of statistical mechanics</title><addtitle>JSTAT</addtitle><addtitle>J. Stat. Mech</addtitle><description>We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim.</description><subject>Approximation</subject><subject>Cellular automata</subject><subject>Construction</subject><subject>Density</subject><subject>Entropy</subject><subject>Mathematical analysis</subject><subject>Orbits</subject><issn>1742-5468</issn><issn>1742-5468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-hxy91E6-k6MsfsGKHnbPIbYpdOk2NWnB_femVMSbp3mZmXd450EIE7gjoHVJFKeF4FKXFAgvgZbvQAHMGVr9js7_6Et0ldIBgFHgeoXYa9u3R9dh348xDCfshiGGr9wa29DjJkRc-a6bOhexm8aQ--4aXTSuS_7mp67R_vFht3kutm9PL5v7bVFRTceCM5mFrLxxtQRm1AeFOscQyrBG1Y4oKZgyGqgCr70nnAsquda1YkI0iq3R7XI3J_qcfBrtsU1zGtf7MCVLpDRaK8lpXtXLahVDStE3doj5h3iyBOzMyc4A7AzAzpwsULtwyla-WNsw2EOYYp9_-t_2DazLaOY</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Fuk, Henryk</creator><general>IOP Publishing and SISSA</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140201</creationdate><title>Minimal entropy approximation for cellular automata</title><author>Fuk, Henryk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-436c286ce9ad60397b20d7425793f7da176537980270e8ee144526488d7355f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Cellular automata</topic><topic>Construction</topic><topic>Density</topic><topic>Entropy</topic><topic>Mathematical analysis</topic><topic>Orbits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuk, Henryk</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of statistical mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuk, Henryk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal entropy approximation for cellular automata</atitle><jtitle>Journal of statistical mechanics</jtitle><stitle>JSTAT</stitle><addtitle>J. Stat. Mech</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>2014</volume><issue>2</issue><spage>P02009</spage><epage>20</epage><pages>P02009-20</pages><issn>1742-5468</issn><eissn>1742-5468</eissn><coden>JSMTC6</coden><abstract>We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim.</abstract><pub>IOP Publishing and SISSA</pub><doi>10.1088/1742-5468/2014/02/P02009</doi><tpages>20</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1742-5468
ispartof Journal of statistical mechanics, 2014-02, Vol.2014 (2), p.P02009-20
issn 1742-5468
1742-5468
language eng
recordid cdi_proquest_miscellaneous_1669887642
source Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)
subjects Approximation
Cellular automata
Construction
Density
Entropy
Mathematical analysis
Orbits
title Minimal entropy approximation for cellular automata
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20entropy%20approximation%20for%20cellular%20automata&rft.jtitle=Journal%20of%20statistical%20mechanics&rft.au=Fuk,%20Henryk&rft.date=2014-02-01&rft.volume=2014&rft.issue=2&rft.spage=P02009&rft.epage=20&rft.pages=P02009-20&rft.issn=1742-5468&rft.eissn=1742-5468&rft.coden=JSMTC6&rft_id=info:doi/10.1088/1742-5468/2014/02/P02009&rft_dat=%3Cproquest_cross%3E1669887642%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c282t-436c286ce9ad60397b20d7425793f7da176537980270e8ee144526488d7355f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1669887642&rft_id=info:pmid/&rfr_iscdi=true