Loading…
Minimal entropy approximation for cellular automata
We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with...
Saved in:
Published in: | Journal of statistical mechanics 2014-02, Vol.2014 (2), p.P02009-20 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c282t-436c286ce9ad60397b20d7425793f7da176537980270e8ee144526488d7355f73 |
container_end_page | 20 |
container_issue | 2 |
container_start_page | P02009 |
container_title | Journal of statistical mechanics |
container_volume | 2014 |
creator | Fuk, Henryk |
description | We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim. |
doi_str_mv | 10.1088/1742-5468/2014/02/P02009 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669887642</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1669887642</sourcerecordid><originalsourceid>FETCH-LOGICAL-c282t-436c286ce9ad60397b20d7425793f7da176537980270e8ee144526488d7355f73</originalsourceid><addsrcrecordid>eNqFkE1LxDAQhoMouK7-hxy91E6-k6MsfsGKHnbPIbYpdOk2NWnB_femVMSbp3mZmXd450EIE7gjoHVJFKeF4FKXFAgvgZbvQAHMGVr9js7_6Et0ldIBgFHgeoXYa9u3R9dh348xDCfshiGGr9wa29DjJkRc-a6bOhexm8aQ--4aXTSuS_7mp67R_vFht3kutm9PL5v7bVFRTceCM5mFrLxxtQRm1AeFOscQyrBG1Y4oKZgyGqgCr70nnAsquda1YkI0iq3R7XI3J_qcfBrtsU1zGtf7MCVLpDRaK8lpXtXLahVDStE3doj5h3iyBOzMyc4A7AzAzpwsULtwyla-WNsw2EOYYp9_-t_2DazLaOY</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1669887642</pqid></control><display><type>article</type><title>Minimal entropy approximation for cellular automata</title><source>Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List)</source><creator>Fuk, Henryk</creator><creatorcontrib>Fuk, Henryk</creatorcontrib><description>We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim.</description><identifier>ISSN: 1742-5468</identifier><identifier>EISSN: 1742-5468</identifier><identifier>DOI: 10.1088/1742-5468/2014/02/P02009</identifier><identifier>CODEN: JSMTC6</identifier><language>eng</language><publisher>IOP Publishing and SISSA</publisher><subject>Approximation ; Cellular automata ; Construction ; Density ; Entropy ; Mathematical analysis ; Orbits</subject><ispartof>Journal of statistical mechanics, 2014-02, Vol.2014 (2), p.P02009-20</ispartof><rights>2014 IOP Publishing Ltd and SISSA Medialab srl</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c282t-436c286ce9ad60397b20d7425793f7da176537980270e8ee144526488d7355f73</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Fuk, Henryk</creatorcontrib><title>Minimal entropy approximation for cellular automata</title><title>Journal of statistical mechanics</title><addtitle>JSTAT</addtitle><addtitle>J. Stat. Mech</addtitle><description>We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim.</description><subject>Approximation</subject><subject>Cellular automata</subject><subject>Construction</subject><subject>Density</subject><subject>Entropy</subject><subject>Mathematical analysis</subject><subject>Orbits</subject><issn>1742-5468</issn><issn>1742-5468</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><recordid>eNqFkE1LxDAQhoMouK7-hxy91E6-k6MsfsGKHnbPIbYpdOk2NWnB_femVMSbp3mZmXd450EIE7gjoHVJFKeF4FKXFAgvgZbvQAHMGVr9js7_6Et0ldIBgFHgeoXYa9u3R9dh348xDCfshiGGr9wa29DjJkRc-a6bOhexm8aQ--4aXTSuS_7mp67R_vFht3kutm9PL5v7bVFRTceCM5mFrLxxtQRm1AeFOscQyrBG1Y4oKZgyGqgCr70nnAsquda1YkI0iq3R7XI3J_qcfBrtsU1zGtf7MCVLpDRaK8lpXtXLahVDStE3doj5h3iyBOzMyc4A7AzAzpwsULtwyla-WNsw2EOYYp9_-t_2DazLaOY</recordid><startdate>20140201</startdate><enddate>20140201</enddate><creator>Fuk, Henryk</creator><general>IOP Publishing and SISSA</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7U5</scope><scope>8FD</scope><scope>H8D</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20140201</creationdate><title>Minimal entropy approximation for cellular automata</title><author>Fuk, Henryk</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c282t-436c286ce9ad60397b20d7425793f7da176537980270e8ee144526488d7355f73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Approximation</topic><topic>Cellular automata</topic><topic>Construction</topic><topic>Density</topic><topic>Entropy</topic><topic>Mathematical analysis</topic><topic>Orbits</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuk, Henryk</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Journal of statistical mechanics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuk, Henryk</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Minimal entropy approximation for cellular automata</atitle><jtitle>Journal of statistical mechanics</jtitle><stitle>JSTAT</stitle><addtitle>J. Stat. Mech</addtitle><date>2014-02-01</date><risdate>2014</risdate><volume>2014</volume><issue>2</issue><spage>P02009</spage><epage>20</epage><pages>P02009-20</pages><issn>1742-5468</issn><eissn>1742-5468</eissn><coden>JSMTC6</coden><abstract>We present a method for the construction of approximate orbits of measures under the action of cellular automata which is complementary to the local structure theory. The local structure theory is based on the idea of Bayesian extension, that is, construction of a probability measure consistent with given block probabilities and maximizing entropy. If instead of maximizing entropy one minimizes it, one can develop another method for the construction of approximate orbits, at the heart of which is the iteration of finite-dimensional maps, called minimal entropy maps. We present numerical evidence that the minimal entropy approximation sometimes outperforms the local structure theory in characterizing the properties of cellular automata. The density response curve for elementary CA rule 26 is used to illustrate this claim.</abstract><pub>IOP Publishing and SISSA</pub><doi>10.1088/1742-5468/2014/02/P02009</doi><tpages>20</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1742-5468 |
ispartof | Journal of statistical mechanics, 2014-02, Vol.2014 (2), p.P02009-20 |
issn | 1742-5468 1742-5468 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669887642 |
source | Institute of Physics:Jisc Collections:IOP Publishing Read and Publish 2024-2025 (Reading List) |
subjects | Approximation Cellular automata Construction Density Entropy Mathematical analysis Orbits |
title | Minimal entropy approximation for cellular automata |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T05%3A45%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Minimal%20entropy%20approximation%20for%20cellular%20automata&rft.jtitle=Journal%20of%20statistical%20mechanics&rft.au=Fuk,%20Henryk&rft.date=2014-02-01&rft.volume=2014&rft.issue=2&rft.spage=P02009&rft.epage=20&rft.pages=P02009-20&rft.issn=1742-5468&rft.eissn=1742-5468&rft.coden=JSMTC6&rft_id=info:doi/10.1088/1742-5468/2014/02/P02009&rft_dat=%3Cproquest_cross%3E1669887642%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c282t-436c286ce9ad60397b20d7425793f7da176537980270e8ee144526488d7355f73%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1669887642&rft_id=info:pmid/&rfr_iscdi=true |