Loading…

Observation of Moisture Tendencies Related to Shallow Convection

Tropospheric moisture is a key factor controlling the global climate and its variability. For instance, moistening of the lower troposphere is necessary to trigger the convective phase of a Madden–Julian oscillation (MJO). However, the relative importance of the processes controlling this moistening...

Full description

Saved in:
Bibliographic Details
Published in:Journal of the atmospheric sciences 2015-02, Vol.72 (2), p.641-659
Main Authors: Bellenger, H, Yoneyama, K, Katsumata, M, Nishizawa, T, Yasunaga, K, Shirooka, R
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Tropospheric moisture is a key factor controlling the global climate and its variability. For instance, moistening of the lower troposphere is necessary to trigger the convective phase of a Madden–Julian oscillation (MJO). However, the relative importance of the processes controlling this moistening has yet to be quantified. Among these processes, the importance of the moistening by shallow convection is still debated. The authors use high-frequency observations of humidity and convection from the Research Vessel (R/V) Mirai that was located in the Indian Ocean ITCZ during the Cooperative Indian Ocean Experiment on Intraseasonal Variability/Dynamics of the MJO (CINDY/DYNAMO) campaign. This study is an initial attempt to directly link shallow convection to moisture variations within the lowest 4 km of the atmosphere from the convective scale to the mesoscale. Within a few tens of minutes and near shallow convection occurrences, moisture anomalies of 0.25–0.5 g kg−1 that correspond to tendencies on the order of 10–20 g kg−1 day−1 between 1 and 4 km are observed and are attributed to shallow convective clouds. On the scale of a few hours, shallow convection is associated with anomalies of 0.5–1 g kg−1 that correspond to tendencies on the order of 1–4 g kg−1 day−1 according to two independent datasets: lidar and soundings. This can be interpreted as the resultant mesoscale effect of the population of shallow convective clouds. Large-scale advective tendencies can be stronger than the moistening by shallow convection; however, the latter is a steady moisture supply whose importance can increase with the time scale. This evaluation of the moistening tendency related to shallow convection is ultimately important to develop and constrain numerical models.
ISSN:0022-4928
1520-0469
DOI:10.1175/JAS-D-14-0042.1