Loading…

Hysteretic Transition Method for Avoiding the Dead-Zone Effect and Subharmonics in a Noninverting Buck-Boost Converter

A new hysteresis window method is proposed as a solution for avoiding the operational dead zone that exists at the transition between buck and boost operating modes in all noninverting buck-boost converters. In addition, this method also eliminates the discontinuities in the converter's steady-...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power electronics 2015-06, Vol.30 (6), p.3418-3430
Main Authors: Restrepo, Carlos, Konjedic, Tine, Calvente, Javier, Giral, Roberto
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A new hysteresis window method is proposed as a solution for avoiding the operational dead zone that exists at the transition between buck and boost operating modes in all noninverting buck-boost converters. In addition, this method also eliminates the discontinuities in the converter's steady-state output voltage transfer characteristic, which is a function of the duty cycle. The converter's output voltage function is surjective and, therefore, smooth mode transitions are achieved. The negative effects of operating within the dead zone are shown by the presence of subharmonics in the output voltage, increased output voltage ripple, poor regulation, and the instability of the converter during the transition between buck and boost operating modes. The dead-zone avoidance technique proposed in this paper eliminates all these issues while at the same time ensures highly efficient operation of the converter. An additional advantage of the technique is its simplicity, which allows for implementation into low-cost digital signal controllers, as well as into analog control circuits. The advantageous features of the proposed approach were evaluated on the basis of comparisons with three other dead-zone avoidance approaches and the initial case, which does not utilize any dead-zone avoidance technique. All the experiments were carried out on a purpose-built prototype of a noninverting buck-boost converter with magnetically coupled inductors.
ISSN:0885-8993
1941-0107
DOI:10.1109/TPEL.2014.2333736