Loading…

Flat flexible polymer heat pipes

Flat, flexible, lightweight, polymer heat pipes (FPHP) were fabricated. The overall geometry of the heat pipe was 130 mm × 70 mm × 1.31 mm. A commercially available low-cost film composed of laminated sheets of low-density polyethylene terephthalate, aluminum and polyethylene layers was used as the...

Full description

Saved in:
Bibliographic Details
Published in:Journal of micromechanics and microengineering 2013-01, Vol.23 (1), p.15001-6
Main Authors: Oshman, Christopher, Li, Qian, Liew, Li-Anne, Yang, Ronggui, Bright, Victor M, Lee, Y C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Flat, flexible, lightweight, polymer heat pipes (FPHP) were fabricated. The overall geometry of the heat pipe was 130 mm × 70 mm × 1.31 mm. A commercially available low-cost film composed of laminated sheets of low-density polyethylene terephthalate, aluminum and polyethylene layers was used as the casing. A triple-layer sintered copper woven mesh served as a liquid wicking structure, and water was the working fluid. A coarse nylon woven mesh provided space for vapor transport and mechanical rigidity. Thermal power ranging from 5 to 30 W was supplied to the evaporator while the device was flexed at 0°, 45° and 90°. The thermal resistance of the FPHP ranged from 1.2 to 3.0 K W−1 depending on the operating conditions while the thermal resistance for a similar-sized solid copper reference was a constant at 4.6 K W−1. With 25 W power input, the thermal resistance of the liquid-vapor core of the FPHP was 23% of a copper reference sample with identical laminated polymer material. This work shows a promising combination of technologies that has the potential to usher in a new generation of highly flexible, lightweight, low-cost, high-performance thermal management solutions.
ISSN:0960-1317
1361-6439
DOI:10.1088/0960-1317/23/1/015001