Loading…

Particle acceleration in axisymmetric pulsar current sheets

The equatorial current sheet in pulsar magnetospheres is often regarded as an ideal site for particle acceleration via relativistic reconnection. Using 2D spherical particle-in-cell simulations, we investigate particle acceleration in the axisymmetric pulsar magnetosphere as a function of the inject...

Full description

Saved in:
Bibliographic Details
Published in:Monthly notices of the Royal Astronomical Society 2015-03, Vol.448 (1), p.606-619
Main Authors: Cerutti, Benoît, Philippov, Alexander, Parfrey, Kyle, Spitkovsky, Anatoly
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-578fa29c041552f2f6b50b99ba01b8cd934210c3a704c9075ac800089cf854213
cites cdi_FETCH-LOGICAL-c465t-578fa29c041552f2f6b50b99ba01b8cd934210c3a704c9075ac800089cf854213
container_end_page 619
container_issue 1
container_start_page 606
container_title Monthly notices of the Royal Astronomical Society
container_volume 448
creator Cerutti, Benoît
Philippov, Alexander
Parfrey, Kyle
Spitkovsky, Anatoly
description The equatorial current sheet in pulsar magnetospheres is often regarded as an ideal site for particle acceleration via relativistic reconnection. Using 2D spherical particle-in-cell simulations, we investigate particle acceleration in the axisymmetric pulsar magnetosphere as a function of the injected plasma multiplicity and magnetization. We observe a clear transition from a highly charge-separated magnetosphere for low plasma injection with little current and spin-down power, to a nearly force-free solution for high plasma multiplicity characterized by a prominent equatorial current sheet and high spin-down power. We find significant magnetic dissipation in the current sheet, up to 30 per cent within 5 light-cylinder radii in the high-multiplicity regime. The simulations unambiguously demonstrate that the dissipated Poynting flux is efficiently channelled to the particles in the sheet, close to the Y-point within about 1-2 light-cylinder radii from the star. The mean particle energy in the sheet is given by the upstream plasma magnetization at the light cylinder. The study of particle orbits shows that all energetic particles originate from the boundary layer between the open and the closed field lines. Energetic positrons always stream outwards, while high-energy electrons precipitate back towards the star through the sheet and along the separatrices, which may result in auroral-like emission. Our results suggest that the current sheet and the separatrices may be the main source of high-energy radiation in young pulsars.
doi_str_mv 10.1093/mnras/stv042
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669905391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stv042</oup_id><sourcerecordid>1669905391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-578fa29c041552f2f6b50b99ba01b8cd934210c3a704c9075ac800089cf854213</originalsourceid><addsrcrecordid>eNqN0LtKBDEUBuAgCo6rnQ8wYKGF455cJ8FKFm-woIXWIRMzOMvcTDLivr3RsbIQq1Ocj3P5ETrGcIFB0WXXexOWIb4DIzsow1TwgighdlEGQHkhS4z30UEIGwBglIgMXT4aHxvbutxY61rnTWyGPm_63Hw0Ydt1LvrG5uPUBuNzO3nv-piHV-diOER7tWmDO_qpC_R8c_20uivWD7f3q6t1YZngseClrA1RFhjmnNSkFhWHSqnKAK6kfVGUEQyWmhKYVVByY2W6TypbS55adIHO5rmjH94mF6LumpCObU3vhiloLIRSwKn6F2UEpFQy0ZNfdDNMvk-PJMXLtFjIMqnzWVk_hOBdrUffdMZvNQb9Fbr-Dl3PoSd-OvNhGv-Wn1qkgn8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1657421687</pqid></control><display><type>article</type><title>Particle acceleration in axisymmetric pulsar current sheets</title><source>Oxford Journals Open Access</source><creator>Cerutti, Benoît ; Philippov, Alexander ; Parfrey, Kyle ; Spitkovsky, Anatoly</creator><creatorcontrib>Cerutti, Benoît ; Philippov, Alexander ; Parfrey, Kyle ; Spitkovsky, Anatoly</creatorcontrib><description>The equatorial current sheet in pulsar magnetospheres is often regarded as an ideal site for particle acceleration via relativistic reconnection. Using 2D spherical particle-in-cell simulations, we investigate particle acceleration in the axisymmetric pulsar magnetosphere as a function of the injected plasma multiplicity and magnetization. We observe a clear transition from a highly charge-separated magnetosphere for low plasma injection with little current and spin-down power, to a nearly force-free solution for high plasma multiplicity characterized by a prominent equatorial current sheet and high spin-down power. We find significant magnetic dissipation in the current sheet, up to 30 per cent within 5 light-cylinder radii in the high-multiplicity regime. The simulations unambiguously demonstrate that the dissipated Poynting flux is efficiently channelled to the particles in the sheet, close to the Y-point within about 1-2 light-cylinder radii from the star. The mean particle energy in the sheet is given by the upstream plasma magnetization at the light cylinder. The study of particle orbits shows that all energetic particles originate from the boundary layer between the open and the closed field lines. Energetic positrons always stream outwards, while high-energy electrons precipitate back towards the star through the sheet and along the separatrices, which may result in auroral-like emission. Our results suggest that the current sheet and the separatrices may be the main source of high-energy radiation in young pulsars.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stv042</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Axisymmetric ; Boundary layer ; Current sheets ; Cylinders ; Dissipation ; Electrons ; Magnetization ; Particle acceleration ; Positrons ; Pulsar magnetospheres ; Pulsars ; Simulation ; Star &amp; galaxy formation ; Stars</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2015-03, Vol.448 (1), p.606-619</ispartof><rights>2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2015</rights><rights>Copyright Oxford University Press, UK Mar 21, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-578fa29c041552f2f6b50b99ba01b8cd934210c3a704c9075ac800089cf854213</citedby><cites>FETCH-LOGICAL-c465t-578fa29c041552f2f6b50b99ba01b8cd934210c3a704c9075ac800089cf854213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stv042$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Cerutti, Benoît</creatorcontrib><creatorcontrib>Philippov, Alexander</creatorcontrib><creatorcontrib>Parfrey, Kyle</creatorcontrib><creatorcontrib>Spitkovsky, Anatoly</creatorcontrib><title>Particle acceleration in axisymmetric pulsar current sheets</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>The equatorial current sheet in pulsar magnetospheres is often regarded as an ideal site for particle acceleration via relativistic reconnection. Using 2D spherical particle-in-cell simulations, we investigate particle acceleration in the axisymmetric pulsar magnetosphere as a function of the injected plasma multiplicity and magnetization. We observe a clear transition from a highly charge-separated magnetosphere for low plasma injection with little current and spin-down power, to a nearly force-free solution for high plasma multiplicity characterized by a prominent equatorial current sheet and high spin-down power. We find significant magnetic dissipation in the current sheet, up to 30 per cent within 5 light-cylinder radii in the high-multiplicity regime. The simulations unambiguously demonstrate that the dissipated Poynting flux is efficiently channelled to the particles in the sheet, close to the Y-point within about 1-2 light-cylinder radii from the star. The mean particle energy in the sheet is given by the upstream plasma magnetization at the light cylinder. The study of particle orbits shows that all energetic particles originate from the boundary layer between the open and the closed field lines. Energetic positrons always stream outwards, while high-energy electrons precipitate back towards the star through the sheet and along the separatrices, which may result in auroral-like emission. Our results suggest that the current sheet and the separatrices may be the main source of high-energy radiation in young pulsars.</description><subject>Axisymmetric</subject><subject>Boundary layer</subject><subject>Current sheets</subject><subject>Cylinders</subject><subject>Dissipation</subject><subject>Electrons</subject><subject>Magnetization</subject><subject>Particle acceleration</subject><subject>Positrons</subject><subject>Pulsar magnetospheres</subject><subject>Pulsars</subject><subject>Simulation</subject><subject>Star &amp; galaxy formation</subject><subject>Stars</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0LtKBDEUBuAgCo6rnQ8wYKGF455cJ8FKFm-woIXWIRMzOMvcTDLivr3RsbIQq1Ocj3P5ETrGcIFB0WXXexOWIb4DIzsow1TwgighdlEGQHkhS4z30UEIGwBglIgMXT4aHxvbutxY61rnTWyGPm_63Hw0Ydt1LvrG5uPUBuNzO3nv-piHV-diOER7tWmDO_qpC_R8c_20uivWD7f3q6t1YZngseClrA1RFhjmnNSkFhWHSqnKAK6kfVGUEQyWmhKYVVByY2W6TypbS55adIHO5rmjH94mF6LumpCObU3vhiloLIRSwKn6F2UEpFQy0ZNfdDNMvk-PJMXLtFjIMqnzWVk_hOBdrUffdMZvNQb9Fbr-Dl3PoSd-OvNhGv-Wn1qkgn8</recordid><startdate>20150321</startdate><enddate>20150321</enddate><creator>Cerutti, Benoît</creator><creator>Philippov, Alexander</creator><creator>Parfrey, Kyle</creator><creator>Spitkovsky, Anatoly</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope><scope>7U5</scope></search><sort><creationdate>20150321</creationdate><title>Particle acceleration in axisymmetric pulsar current sheets</title><author>Cerutti, Benoît ; Philippov, Alexander ; Parfrey, Kyle ; Spitkovsky, Anatoly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-578fa29c041552f2f6b50b99ba01b8cd934210c3a704c9075ac800089cf854213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Axisymmetric</topic><topic>Boundary layer</topic><topic>Current sheets</topic><topic>Cylinders</topic><topic>Dissipation</topic><topic>Electrons</topic><topic>Magnetization</topic><topic>Particle acceleration</topic><topic>Positrons</topic><topic>Pulsar magnetospheres</topic><topic>Pulsars</topic><topic>Simulation</topic><topic>Star &amp; galaxy formation</topic><topic>Stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cerutti, Benoît</creatorcontrib><creatorcontrib>Philippov, Alexander</creatorcontrib><creatorcontrib>Parfrey, Kyle</creatorcontrib><creatorcontrib>Spitkovsky, Anatoly</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cerutti, Benoît</au><au>Philippov, Alexander</au><au>Parfrey, Kyle</au><au>Spitkovsky, Anatoly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle acceleration in axisymmetric pulsar current sheets</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><date>2015-03-21</date><risdate>2015</risdate><volume>448</volume><issue>1</issue><spage>606</spage><epage>619</epage><pages>606-619</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>The equatorial current sheet in pulsar magnetospheres is often regarded as an ideal site for particle acceleration via relativistic reconnection. Using 2D spherical particle-in-cell simulations, we investigate particle acceleration in the axisymmetric pulsar magnetosphere as a function of the injected plasma multiplicity and magnetization. We observe a clear transition from a highly charge-separated magnetosphere for low plasma injection with little current and spin-down power, to a nearly force-free solution for high plasma multiplicity characterized by a prominent equatorial current sheet and high spin-down power. We find significant magnetic dissipation in the current sheet, up to 30 per cent within 5 light-cylinder radii in the high-multiplicity regime. The simulations unambiguously demonstrate that the dissipated Poynting flux is efficiently channelled to the particles in the sheet, close to the Y-point within about 1-2 light-cylinder radii from the star. The mean particle energy in the sheet is given by the upstream plasma magnetization at the light cylinder. The study of particle orbits shows that all energetic particles originate from the boundary layer between the open and the closed field lines. Energetic positrons always stream outwards, while high-energy electrons precipitate back towards the star through the sheet and along the separatrices, which may result in auroral-like emission. Our results suggest that the current sheet and the separatrices may be the main source of high-energy radiation in young pulsars.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stv042</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 0035-8711
ispartof Monthly notices of the Royal Astronomical Society, 2015-03, Vol.448 (1), p.606-619
issn 0035-8711
1365-2966
language eng
recordid cdi_proquest_miscellaneous_1669905391
source Oxford Journals Open Access
subjects Axisymmetric
Boundary layer
Current sheets
Cylinders
Dissipation
Electrons
Magnetization
Particle acceleration
Positrons
Pulsar magnetospheres
Pulsars
Simulation
Star & galaxy formation
Stars
title Particle acceleration in axisymmetric pulsar current sheets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20acceleration%20in%20axisymmetric%20pulsar%20current%20sheets&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Cerutti,%20Beno%C3%AEt&rft.date=2015-03-21&rft.volume=448&rft.issue=1&rft.spage=606&rft.epage=619&rft.pages=606-619&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stv042&rft_dat=%3Cproquest_TOX%3E1669905391%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-578fa29c041552f2f6b50b99ba01b8cd934210c3a704c9075ac800089cf854213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1657421687&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stv042&rfr_iscdi=true