Loading…
Particle acceleration in axisymmetric pulsar current sheets
The equatorial current sheet in pulsar magnetospheres is often regarded as an ideal site for particle acceleration via relativistic reconnection. Using 2D spherical particle-in-cell simulations, we investigate particle acceleration in the axisymmetric pulsar magnetosphere as a function of the inject...
Saved in:
Published in: | Monthly notices of the Royal Astronomical Society 2015-03, Vol.448 (1), p.606-619 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c465t-578fa29c041552f2f6b50b99ba01b8cd934210c3a704c9075ac800089cf854213 |
---|---|
cites | cdi_FETCH-LOGICAL-c465t-578fa29c041552f2f6b50b99ba01b8cd934210c3a704c9075ac800089cf854213 |
container_end_page | 619 |
container_issue | 1 |
container_start_page | 606 |
container_title | Monthly notices of the Royal Astronomical Society |
container_volume | 448 |
creator | Cerutti, Benoît Philippov, Alexander Parfrey, Kyle Spitkovsky, Anatoly |
description | The equatorial current sheet in pulsar magnetospheres is often regarded as an ideal site for particle acceleration via relativistic reconnection. Using 2D spherical particle-in-cell simulations, we investigate particle acceleration in the axisymmetric pulsar magnetosphere as a function of the injected plasma multiplicity and magnetization. We observe a clear transition from a highly charge-separated magnetosphere for low plasma injection with little current and spin-down power, to a nearly force-free solution for high plasma multiplicity characterized by a prominent equatorial current sheet and high spin-down power. We find significant magnetic dissipation in the current sheet, up to 30 per cent within 5 light-cylinder radii in the high-multiplicity regime. The simulations unambiguously demonstrate that the dissipated Poynting flux is efficiently channelled to the particles in the sheet, close to the Y-point within about 1-2 light-cylinder radii from the star. The mean particle energy in the sheet is given by the upstream plasma magnetization at the light cylinder. The study of particle orbits shows that all energetic particles originate from the boundary layer between the open and the closed field lines. Energetic positrons always stream outwards, while high-energy electrons precipitate back towards the star through the sheet and along the separatrices, which may result in auroral-like emission. Our results suggest that the current sheet and the separatrices may be the main source of high-energy radiation in young pulsars. |
doi_str_mv | 10.1093/mnras/stv042 |
format | article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_1669905391</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/mnras/stv042</oup_id><sourcerecordid>1669905391</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-578fa29c041552f2f6b50b99ba01b8cd934210c3a704c9075ac800089cf854213</originalsourceid><addsrcrecordid>eNqN0LtKBDEUBuAgCo6rnQ8wYKGF455cJ8FKFm-woIXWIRMzOMvcTDLivr3RsbIQq1Ocj3P5ETrGcIFB0WXXexOWIb4DIzsow1TwgighdlEGQHkhS4z30UEIGwBglIgMXT4aHxvbutxY61rnTWyGPm_63Hw0Ydt1LvrG5uPUBuNzO3nv-piHV-diOER7tWmDO_qpC_R8c_20uivWD7f3q6t1YZngseClrA1RFhjmnNSkFhWHSqnKAK6kfVGUEQyWmhKYVVByY2W6TypbS55adIHO5rmjH94mF6LumpCObU3vhiloLIRSwKn6F2UEpFQy0ZNfdDNMvk-PJMXLtFjIMqnzWVk_hOBdrUffdMZvNQb9Fbr-Dl3PoSd-OvNhGv-Wn1qkgn8</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1657421687</pqid></control><display><type>article</type><title>Particle acceleration in axisymmetric pulsar current sheets</title><source>Oxford Journals Open Access</source><creator>Cerutti, Benoît ; Philippov, Alexander ; Parfrey, Kyle ; Spitkovsky, Anatoly</creator><creatorcontrib>Cerutti, Benoît ; Philippov, Alexander ; Parfrey, Kyle ; Spitkovsky, Anatoly</creatorcontrib><description>The equatorial current sheet in pulsar magnetospheres is often regarded as an ideal site for particle acceleration via relativistic reconnection. Using 2D spherical particle-in-cell simulations, we investigate particle acceleration in the axisymmetric pulsar magnetosphere as a function of the injected plasma multiplicity and magnetization. We observe a clear transition from a highly charge-separated magnetosphere for low plasma injection with little current and spin-down power, to a nearly force-free solution for high plasma multiplicity characterized by a prominent equatorial current sheet and high spin-down power. We find significant magnetic dissipation in the current sheet, up to 30 per cent within 5 light-cylinder radii in the high-multiplicity regime. The simulations unambiguously demonstrate that the dissipated Poynting flux is efficiently channelled to the particles in the sheet, close to the Y-point within about 1-2 light-cylinder radii from the star. The mean particle energy in the sheet is given by the upstream plasma magnetization at the light cylinder. The study of particle orbits shows that all energetic particles originate from the boundary layer between the open and the closed field lines. Energetic positrons always stream outwards, while high-energy electrons precipitate back towards the star through the sheet and along the separatrices, which may result in auroral-like emission. Our results suggest that the current sheet and the separatrices may be the main source of high-energy radiation in young pulsars.</description><identifier>ISSN: 0035-8711</identifier><identifier>EISSN: 1365-2966</identifier><identifier>DOI: 10.1093/mnras/stv042</identifier><language>eng</language><publisher>London: Oxford University Press</publisher><subject>Axisymmetric ; Boundary layer ; Current sheets ; Cylinders ; Dissipation ; Electrons ; Magnetization ; Particle acceleration ; Positrons ; Pulsar magnetospheres ; Pulsars ; Simulation ; Star & galaxy formation ; Stars</subject><ispartof>Monthly notices of the Royal Astronomical Society, 2015-03, Vol.448 (1), p.606-619</ispartof><rights>2015 The Authors Published by Oxford University Press on behalf of the Royal Astronomical Society 2015</rights><rights>Copyright Oxford University Press, UK Mar 21, 2015</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-578fa29c041552f2f6b50b99ba01b8cd934210c3a704c9075ac800089cf854213</citedby><cites>FETCH-LOGICAL-c465t-578fa29c041552f2f6b50b99ba01b8cd934210c3a704c9075ac800089cf854213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,1598,27901,27902</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/mnras/stv042$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc></links><search><creatorcontrib>Cerutti, Benoît</creatorcontrib><creatorcontrib>Philippov, Alexander</creatorcontrib><creatorcontrib>Parfrey, Kyle</creatorcontrib><creatorcontrib>Spitkovsky, Anatoly</creatorcontrib><title>Particle acceleration in axisymmetric pulsar current sheets</title><title>Monthly notices of the Royal Astronomical Society</title><addtitle>Mon. Not. R. Astron. Soc</addtitle><description>The equatorial current sheet in pulsar magnetospheres is often regarded as an ideal site for particle acceleration via relativistic reconnection. Using 2D spherical particle-in-cell simulations, we investigate particle acceleration in the axisymmetric pulsar magnetosphere as a function of the injected plasma multiplicity and magnetization. We observe a clear transition from a highly charge-separated magnetosphere for low plasma injection with little current and spin-down power, to a nearly force-free solution for high plasma multiplicity characterized by a prominent equatorial current sheet and high spin-down power. We find significant magnetic dissipation in the current sheet, up to 30 per cent within 5 light-cylinder radii in the high-multiplicity regime. The simulations unambiguously demonstrate that the dissipated Poynting flux is efficiently channelled to the particles in the sheet, close to the Y-point within about 1-2 light-cylinder radii from the star. The mean particle energy in the sheet is given by the upstream plasma magnetization at the light cylinder. The study of particle orbits shows that all energetic particles originate from the boundary layer between the open and the closed field lines. Energetic positrons always stream outwards, while high-energy electrons precipitate back towards the star through the sheet and along the separatrices, which may result in auroral-like emission. Our results suggest that the current sheet and the separatrices may be the main source of high-energy radiation in young pulsars.</description><subject>Axisymmetric</subject><subject>Boundary layer</subject><subject>Current sheets</subject><subject>Cylinders</subject><subject>Dissipation</subject><subject>Electrons</subject><subject>Magnetization</subject><subject>Particle acceleration</subject><subject>Positrons</subject><subject>Pulsar magnetospheres</subject><subject>Pulsars</subject><subject>Simulation</subject><subject>Star & galaxy formation</subject><subject>Stars</subject><issn>0035-8711</issn><issn>1365-2966</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2015</creationdate><recordtype>article</recordtype><recordid>eNqN0LtKBDEUBuAgCo6rnQ8wYKGF455cJ8FKFm-woIXWIRMzOMvcTDLivr3RsbIQq1Ocj3P5ETrGcIFB0WXXexOWIb4DIzsow1TwgighdlEGQHkhS4z30UEIGwBglIgMXT4aHxvbutxY61rnTWyGPm_63Hw0Ydt1LvrG5uPUBuNzO3nv-piHV-diOER7tWmDO_qpC_R8c_20uivWD7f3q6t1YZngseClrA1RFhjmnNSkFhWHSqnKAK6kfVGUEQyWmhKYVVByY2W6TypbS55adIHO5rmjH94mF6LumpCObU3vhiloLIRSwKn6F2UEpFQy0ZNfdDNMvk-PJMXLtFjIMqnzWVk_hOBdrUffdMZvNQb9Fbr-Dl3PoSd-OvNhGv-Wn1qkgn8</recordid><startdate>20150321</startdate><enddate>20150321</enddate><creator>Cerutti, Benoît</creator><creator>Philippov, Alexander</creator><creator>Parfrey, Kyle</creator><creator>Spitkovsky, Anatoly</creator><general>Oxford University Press</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FD</scope><scope>H8D</scope><scope>L7M</scope><scope>7TG</scope><scope>KL.</scope><scope>7U5</scope></search><sort><creationdate>20150321</creationdate><title>Particle acceleration in axisymmetric pulsar current sheets</title><author>Cerutti, Benoît ; Philippov, Alexander ; Parfrey, Kyle ; Spitkovsky, Anatoly</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-578fa29c041552f2f6b50b99ba01b8cd934210c3a704c9075ac800089cf854213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2015</creationdate><topic>Axisymmetric</topic><topic>Boundary layer</topic><topic>Current sheets</topic><topic>Cylinders</topic><topic>Dissipation</topic><topic>Electrons</topic><topic>Magnetization</topic><topic>Particle acceleration</topic><topic>Positrons</topic><topic>Pulsar magnetospheres</topic><topic>Pulsars</topic><topic>Simulation</topic><topic>Star & galaxy formation</topic><topic>Stars</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cerutti, Benoît</creatorcontrib><creatorcontrib>Philippov, Alexander</creatorcontrib><creatorcontrib>Parfrey, Kyle</creatorcontrib><creatorcontrib>Spitkovsky, Anatoly</creatorcontrib><collection>CrossRef</collection><collection>Technology Research Database</collection><collection>Aerospace Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>Solid State and Superconductivity Abstracts</collection><jtitle>Monthly notices of the Royal Astronomical Society</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Cerutti, Benoît</au><au>Philippov, Alexander</au><au>Parfrey, Kyle</au><au>Spitkovsky, Anatoly</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Particle acceleration in axisymmetric pulsar current sheets</atitle><jtitle>Monthly notices of the Royal Astronomical Society</jtitle><stitle>Mon. Not. R. Astron. Soc</stitle><date>2015-03-21</date><risdate>2015</risdate><volume>448</volume><issue>1</issue><spage>606</spage><epage>619</epage><pages>606-619</pages><issn>0035-8711</issn><eissn>1365-2966</eissn><abstract>The equatorial current sheet in pulsar magnetospheres is often regarded as an ideal site for particle acceleration via relativistic reconnection. Using 2D spherical particle-in-cell simulations, we investigate particle acceleration in the axisymmetric pulsar magnetosphere as a function of the injected plasma multiplicity and magnetization. We observe a clear transition from a highly charge-separated magnetosphere for low plasma injection with little current and spin-down power, to a nearly force-free solution for high plasma multiplicity characterized by a prominent equatorial current sheet and high spin-down power. We find significant magnetic dissipation in the current sheet, up to 30 per cent within 5 light-cylinder radii in the high-multiplicity regime. The simulations unambiguously demonstrate that the dissipated Poynting flux is efficiently channelled to the particles in the sheet, close to the Y-point within about 1-2 light-cylinder radii from the star. The mean particle energy in the sheet is given by the upstream plasma magnetization at the light cylinder. The study of particle orbits shows that all energetic particles originate from the boundary layer between the open and the closed field lines. Energetic positrons always stream outwards, while high-energy electrons precipitate back towards the star through the sheet and along the separatrices, which may result in auroral-like emission. Our results suggest that the current sheet and the separatrices may be the main source of high-energy radiation in young pulsars.</abstract><cop>London</cop><pub>Oxford University Press</pub><doi>10.1093/mnras/stv042</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0035-8711 |
ispartof | Monthly notices of the Royal Astronomical Society, 2015-03, Vol.448 (1), p.606-619 |
issn | 0035-8711 1365-2966 |
language | eng |
recordid | cdi_proquest_miscellaneous_1669905391 |
source | Oxford Journals Open Access |
subjects | Axisymmetric Boundary layer Current sheets Cylinders Dissipation Electrons Magnetization Particle acceleration Positrons Pulsar magnetospheres Pulsars Simulation Star & galaxy formation Stars |
title | Particle acceleration in axisymmetric pulsar current sheets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T20%3A08%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Particle%20acceleration%20in%20axisymmetric%20pulsar%20current%20sheets&rft.jtitle=Monthly%20notices%20of%20the%20Royal%20Astronomical%20Society&rft.au=Cerutti,%20Beno%C3%AEt&rft.date=2015-03-21&rft.volume=448&rft.issue=1&rft.spage=606&rft.epage=619&rft.pages=606-619&rft.issn=0035-8711&rft.eissn=1365-2966&rft_id=info:doi/10.1093/mnras/stv042&rft_dat=%3Cproquest_TOX%3E1669905391%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-578fa29c041552f2f6b50b99ba01b8cd934210c3a704c9075ac800089cf854213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1657421687&rft_id=info:pmid/&rft_oup_id=10.1093/mnras/stv042&rfr_iscdi=true |