Loading…

Nanofluidic devices for dielectrophoretic mobility shift assays by soft lithography

We report development and application of 3D structured nano-microfluidic devices that were produced via soft lithography with poly(dimethylsiloxane). The procedure does not rely on hazardous or time-consuming production steps. Here, the nanochannels were created by channel-spanning ridges that reduc...

Full description

Saved in:
Bibliographic Details
Published in:Journal of micromechanics and microengineering 2012-11, Vol.22 (11), p.115024-8
Main Authors: Viefhues, M, Regtmeier, J, Anselmetti, D
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report development and application of 3D structured nano-microfluidic devices that were produced via soft lithography with poly(dimethylsiloxane). The procedure does not rely on hazardous or time-consuming production steps. Here, the nanochannels were created by channel-spanning ridges that reduce the flow height of the microchannel. Several realizations of the ridge layout and nanochannel height are demonstrated, depicting the high potential of this technique. The nanochannels proved to be stable even for width-to-height aspect ratios of 873:1. Additionally, an application of these submicrometer structures is presented with a new technique of a dielectrophoretic mobility shift assay (DEMSA). The DEMSA was used to detect different DNA variants, e.g. protein-DNA-complexes, via a shift in (dielectrophoretically retarded) migration velocities within an array of nanoslits.
ISSN:0960-1317
1361-6439
DOI:10.1088/0960-1317/22/11/115024