Loading…
Nanofluidic devices for dielectrophoretic mobility shift assays by soft lithography
We report development and application of 3D structured nano-microfluidic devices that were produced via soft lithography with poly(dimethylsiloxane). The procedure does not rely on hazardous or time-consuming production steps. Here, the nanochannels were created by channel-spanning ridges that reduc...
Saved in:
Published in: | Journal of micromechanics and microengineering 2012-11, Vol.22 (11), p.115024-8 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We report development and application of 3D structured nano-microfluidic devices that were produced via soft lithography with poly(dimethylsiloxane). The procedure does not rely on hazardous or time-consuming production steps. Here, the nanochannels were created by channel-spanning ridges that reduce the flow height of the microchannel. Several realizations of the ridge layout and nanochannel height are demonstrated, depicting the high potential of this technique. The nanochannels proved to be stable even for width-to-height aspect ratios of 873:1. Additionally, an application of these submicrometer structures is presented with a new technique of a dielectrophoretic mobility shift assay (DEMSA). The DEMSA was used to detect different DNA variants, e.g. protein-DNA-complexes, via a shift in (dielectrophoretically retarded) migration velocities within an array of nanoslits. |
---|---|
ISSN: | 0960-1317 1361-6439 |
DOI: | 10.1088/0960-1317/22/11/115024 |