Loading…

The Ptolemy and Zbăganu constants of normed spaces

In every inner product space H the Ptolemy inequality holds: the product of the diagonals of a quadrilateral is less than or equal to the sum of the products of the opposite sides. In other words, ‖ x − y ‖ ‖ z − w ‖ ≤ ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ for any points w , x , y , z in H . It...

Full description

Saved in:
Bibliographic Details
Published in:Nonlinear analysis 2010-06, Vol.72 (11), p.3984-3993
Main Authors: Llorens-Fuster, Enrique, Mazcuñán-Navarro, Eva M., Reich, Simeon
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c423t-6e30197597e4b74d6a59bd8ba1e54343f0b2e895925427701e1a62b6221719d83
cites cdi_FETCH-LOGICAL-c423t-6e30197597e4b74d6a59bd8ba1e54343f0b2e895925427701e1a62b6221719d83
container_end_page 3993
container_issue 11
container_start_page 3984
container_title Nonlinear analysis
container_volume 72
creator Llorens-Fuster, Enrique
Mazcuñán-Navarro, Eva M.
Reich, Simeon
description In every inner product space H the Ptolemy inequality holds: the product of the diagonals of a quadrilateral is less than or equal to the sum of the products of the opposite sides. In other words, ‖ x − y ‖ ‖ z − w ‖ ≤ ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ for any points w , x , y , z in H . It is known that for each normed space ( X , ‖ ⋅ ‖ ) , there exists a constant C such that for any w , x , y , z ∈ X , we have ‖ x − y ‖ ‖ z − w ‖ ≤ C ( ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ ) . The smallest such C is called the Ptolemy constant of X and is denoted by C P ( X ) . We study the relationships between this constant and the geometry of the space X , and hence with metric fixed point theory. In particular, we relate the Ptolemy constant C P to the Zbăganu constant C Z , and prove that if X is a Banach space with C Z ( X ) < ( 1 + 3 ) / 2 , then X has (uniform) normal structure and therefore the fixed point property for nonexpansive mappings. We derive general lower and upper bounds for both C P and C Z , and calculate the precise values of these two constants for several normed spaces. We also present a number of conjectures and open problems.
doi_str_mv 10.1016/j.na.2010.01.030
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671223387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X10000416</els_id><sourcerecordid>1671223387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-6e30197597e4b74d6a59bd8ba1e54343f0b2e895925427701e1a62b6221719d83</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFbvHnMRvKTO7GZ3E29S_AcFPVQQL8tmM9GUdFN3U6Fnv5ofzJQWbzKHYeC9N7wfY-cIEwRUV4uJtxMOwwk4AQEHbIS5FqnkKA_ZCITiqczU6zE7iXEBAKiFGjEx_6Dkue9aWm4S66vkrfz5frd-nbjOx976PiZdnfguLKlK4so6iqfsqLZtpLP9HrOXu9v59CGdPd0_Tm9mqcu46FNFArDQstCUlTqrlJVFWeWlRZKZyEQNJae8kAWXGdcakNAqXirOUWNR5WLMLne5q9B9rin2ZtlER21rPXXraFBp5FyIoeaYwU7qQhdjoNqsQrO0YWMQzJaPWRhvzZaPATQDn8FysU-30dm2Dta7Jv75OJc5DDPornc6Gqp-NRRMdA15R1UTyPWm6pr_n_wCBt13ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671223387</pqid></control><display><type>article</type><title>The Ptolemy and Zbăganu constants of normed spaces</title><source>Backfile Package - Mathematics (Legacy) [YMT]</source><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Llorens-Fuster, Enrique ; Mazcuñán-Navarro, Eva M. ; Reich, Simeon</creator><creatorcontrib>Llorens-Fuster, Enrique ; Mazcuñán-Navarro, Eva M. ; Reich, Simeon</creatorcontrib><description>In every inner product space H the Ptolemy inequality holds: the product of the diagonals of a quadrilateral is less than or equal to the sum of the products of the opposite sides. In other words, ‖ x − y ‖ ‖ z − w ‖ ≤ ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ for any points w , x , y , z in H . It is known that for each normed space ( X , ‖ ⋅ ‖ ) , there exists a constant C such that for any w , x , y , z ∈ X , we have ‖ x − y ‖ ‖ z − w ‖ ≤ C ( ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ ) . The smallest such C is called the Ptolemy constant of X and is denoted by C P ( X ) . We study the relationships between this constant and the geometry of the space X , and hence with metric fixed point theory. In particular, we relate the Ptolemy constant C P to the Zbăganu constant C Z , and prove that if X is a Banach space with C Z ( X ) &lt; ( 1 + 3 ) / 2 , then X has (uniform) normal structure and therefore the fixed point property for nonexpansive mappings. We derive general lower and upper bounds for both C P and C Z , and calculate the precise values of these two constants for several normed spaces. We also present a number of conjectures and open problems.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2010.01.030</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Banach space ; Constants ; Exact sciences and technology ; Functional analysis ; Inequalities ; Mapping ; Mathematical analysis ; Mathematics ; Nonlinearity ; Normal structure ; Ptolemy constant ; Quadrilaterals ; Sciences and techniques of general use ; Upper bounds ; Zbăganu constant</subject><ispartof>Nonlinear analysis, 2010-06, Vol.72 (11), p.3984-3993</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-6e30197597e4b74d6a59bd8ba1e54343f0b2e895925427701e1a62b6221719d83</citedby><cites>FETCH-LOGICAL-c423t-6e30197597e4b74d6a59bd8ba1e54343f0b2e895925427701e1a62b6221719d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X10000416$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3552,27906,27907,45985</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22580808$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Llorens-Fuster, Enrique</creatorcontrib><creatorcontrib>Mazcuñán-Navarro, Eva M.</creatorcontrib><creatorcontrib>Reich, Simeon</creatorcontrib><title>The Ptolemy and Zbăganu constants of normed spaces</title><title>Nonlinear analysis</title><description>In every inner product space H the Ptolemy inequality holds: the product of the diagonals of a quadrilateral is less than or equal to the sum of the products of the opposite sides. In other words, ‖ x − y ‖ ‖ z − w ‖ ≤ ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ for any points w , x , y , z in H . It is known that for each normed space ( X , ‖ ⋅ ‖ ) , there exists a constant C such that for any w , x , y , z ∈ X , we have ‖ x − y ‖ ‖ z − w ‖ ≤ C ( ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ ) . The smallest such C is called the Ptolemy constant of X and is denoted by C P ( X ) . We study the relationships between this constant and the geometry of the space X , and hence with metric fixed point theory. In particular, we relate the Ptolemy constant C P to the Zbăganu constant C Z , and prove that if X is a Banach space with C Z ( X ) &lt; ( 1 + 3 ) / 2 , then X has (uniform) normal structure and therefore the fixed point property for nonexpansive mappings. We derive general lower and upper bounds for both C P and C Z , and calculate the precise values of these two constants for several normed spaces. We also present a number of conjectures and open problems.</description><subject>Banach space</subject><subject>Constants</subject><subject>Exact sciences and technology</subject><subject>Functional analysis</subject><subject>Inequalities</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonlinearity</subject><subject>Normal structure</subject><subject>Ptolemy constant</subject><subject>Quadrilaterals</subject><subject>Sciences and techniques of general use</subject><subject>Upper bounds</subject><subject>Zbăganu constant</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFbvHnMRvKTO7GZ3E29S_AcFPVQQL8tmM9GUdFN3U6Fnv5ofzJQWbzKHYeC9N7wfY-cIEwRUV4uJtxMOwwk4AQEHbIS5FqnkKA_ZCITiqczU6zE7iXEBAKiFGjEx_6Dkue9aWm4S66vkrfz5frd-nbjOx976PiZdnfguLKlK4so6iqfsqLZtpLP9HrOXu9v59CGdPd0_Tm9mqcu46FNFArDQstCUlTqrlJVFWeWlRZKZyEQNJae8kAWXGdcakNAqXirOUWNR5WLMLne5q9B9rin2ZtlER21rPXXraFBp5FyIoeaYwU7qQhdjoNqsQrO0YWMQzJaPWRhvzZaPATQDn8FysU-30dm2Dta7Jv75OJc5DDPornc6Gqp-NRRMdA15R1UTyPWm6pr_n_wCBt13ZQ</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Llorens-Fuster, Enrique</creator><creator>Mazcuñán-Navarro, Eva M.</creator><creator>Reich, Simeon</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100601</creationdate><title>The Ptolemy and Zbăganu constants of normed spaces</title><author>Llorens-Fuster, Enrique ; Mazcuñán-Navarro, Eva M. ; Reich, Simeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-6e30197597e4b74d6a59bd8ba1e54343f0b2e895925427701e1a62b6221719d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Banach space</topic><topic>Constants</topic><topic>Exact sciences and technology</topic><topic>Functional analysis</topic><topic>Inequalities</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonlinearity</topic><topic>Normal structure</topic><topic>Ptolemy constant</topic><topic>Quadrilaterals</topic><topic>Sciences and techniques of general use</topic><topic>Upper bounds</topic><topic>Zbăganu constant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Llorens-Fuster, Enrique</creatorcontrib><creatorcontrib>Mazcuñán-Navarro, Eva M.</creatorcontrib><creatorcontrib>Reich, Simeon</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Llorens-Fuster, Enrique</au><au>Mazcuñán-Navarro, Eva M.</au><au>Reich, Simeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Ptolemy and Zbăganu constants of normed spaces</atitle><jtitle>Nonlinear analysis</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>72</volume><issue>11</issue><spage>3984</spage><epage>3993</epage><pages>3984-3993</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>In every inner product space H the Ptolemy inequality holds: the product of the diagonals of a quadrilateral is less than or equal to the sum of the products of the opposite sides. In other words, ‖ x − y ‖ ‖ z − w ‖ ≤ ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ for any points w , x , y , z in H . It is known that for each normed space ( X , ‖ ⋅ ‖ ) , there exists a constant C such that for any w , x , y , z ∈ X , we have ‖ x − y ‖ ‖ z − w ‖ ≤ C ( ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ ) . The smallest such C is called the Ptolemy constant of X and is denoted by C P ( X ) . We study the relationships between this constant and the geometry of the space X , and hence with metric fixed point theory. In particular, we relate the Ptolemy constant C P to the Zbăganu constant C Z , and prove that if X is a Banach space with C Z ( X ) &lt; ( 1 + 3 ) / 2 , then X has (uniform) normal structure and therefore the fixed point property for nonexpansive mappings. We derive general lower and upper bounds for both C P and C Z , and calculate the precise values of these two constants for several normed spaces. We also present a number of conjectures and open problems.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2010.01.030</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0362-546X
ispartof Nonlinear analysis, 2010-06, Vol.72 (11), p.3984-3993
issn 0362-546X
1873-5215
language eng
recordid cdi_proquest_miscellaneous_1671223387
source Backfile Package - Mathematics (Legacy) [YMT]; Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)
subjects Banach space
Constants
Exact sciences and technology
Functional analysis
Inequalities
Mapping
Mathematical analysis
Mathematics
Nonlinearity
Normal structure
Ptolemy constant
Quadrilaterals
Sciences and techniques of general use
Upper bounds
Zbăganu constant
title The Ptolemy and Zbăganu constants of normed spaces
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Ptolemy%20and%20Zb%C4%83ganu%20constants%20of%20normed%20spaces&rft.jtitle=Nonlinear%20analysis&rft.au=Llorens-Fuster,%20Enrique&rft.date=2010-06-01&rft.volume=72&rft.issue=11&rft.spage=3984&rft.epage=3993&rft.pages=3984-3993&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2010.01.030&rft_dat=%3Cproquest_cross%3E1671223387%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-6e30197597e4b74d6a59bd8ba1e54343f0b2e895925427701e1a62b6221719d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671223387&rft_id=info:pmid/&rfr_iscdi=true