Loading…
The Ptolemy and Zbăganu constants of normed spaces
In every inner product space H the Ptolemy inequality holds: the product of the diagonals of a quadrilateral is less than or equal to the sum of the products of the opposite sides. In other words, ‖ x − y ‖ ‖ z − w ‖ ≤ ‖ x − z ‖ ‖ y − w ‖ + ‖ z − y ‖ ‖ x − w ‖ for any points w , x , y , z in H . It...
Saved in:
Published in: | Nonlinear analysis 2010-06, Vol.72 (11), p.3984-3993 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c423t-6e30197597e4b74d6a59bd8ba1e54343f0b2e895925427701e1a62b6221719d83 |
---|---|
cites | cdi_FETCH-LOGICAL-c423t-6e30197597e4b74d6a59bd8ba1e54343f0b2e895925427701e1a62b6221719d83 |
container_end_page | 3993 |
container_issue | 11 |
container_start_page | 3984 |
container_title | Nonlinear analysis |
container_volume | 72 |
creator | Llorens-Fuster, Enrique Mazcuñán-Navarro, Eva M. Reich, Simeon |
description | In every inner product space
H
the Ptolemy inequality holds: the product of the diagonals of a quadrilateral is less than or equal to the sum of the products of the opposite sides. In other words,
‖
x
−
y
‖
‖
z
−
w
‖
≤
‖
x
−
z
‖
‖
y
−
w
‖
+
‖
z
−
y
‖
‖
x
−
w
‖
for any points
w
,
x
,
y
,
z
in
H
. It is known that for each normed space
(
X
,
‖
⋅
‖
)
, there exists a constant
C
such that for any
w
,
x
,
y
,
z
∈
X
, we have
‖
x
−
y
‖
‖
z
−
w
‖
≤
C
(
‖
x
−
z
‖
‖
y
−
w
‖
+
‖
z
−
y
‖
‖
x
−
w
‖
)
. The smallest such
C
is called the Ptolemy constant of
X
and is denoted by
C
P
(
X
)
. We study the relationships between this constant and the geometry of the space
X
, and hence with metric fixed point theory. In particular, we relate the Ptolemy constant
C
P
to the Zbăganu constant
C
Z
, and prove that if
X
is a Banach space with
C
Z
(
X
)
<
(
1
+
3
)
/
2
, then
X
has (uniform) normal structure and therefore the fixed point property for nonexpansive mappings. We derive general lower and upper bounds for both
C
P
and
C
Z
, and calculate the precise values of these two constants for several normed spaces. We also present a number of conjectures and open problems. |
doi_str_mv | 10.1016/j.na.2010.01.030 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671223387</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0362546X10000416</els_id><sourcerecordid>1671223387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c423t-6e30197597e4b74d6a59bd8ba1e54343f0b2e895925427701e1a62b6221719d83</originalsourceid><addsrcrecordid>eNp1kE9Lw0AQxRdRsFbvHnMRvKTO7GZ3E29S_AcFPVQQL8tmM9GUdFN3U6Fnv5ofzJQWbzKHYeC9N7wfY-cIEwRUV4uJtxMOwwk4AQEHbIS5FqnkKA_ZCITiqczU6zE7iXEBAKiFGjEx_6Dkue9aWm4S66vkrfz5frd-nbjOx976PiZdnfguLKlK4so6iqfsqLZtpLP9HrOXu9v59CGdPd0_Tm9mqcu46FNFArDQstCUlTqrlJVFWeWlRZKZyEQNJae8kAWXGdcakNAqXirOUWNR5WLMLne5q9B9rin2ZtlER21rPXXraFBp5FyIoeaYwU7qQhdjoNqsQrO0YWMQzJaPWRhvzZaPATQDn8FysU-30dm2Dta7Jv75OJc5DDPornc6Gqp-NRRMdA15R1UTyPWm6pr_n_wCBt13ZQ</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671223387</pqid></control><display><type>article</type><title>The Ptolemy and Zbăganu constants of normed spaces</title><source>Backfile Package - Mathematics (Legacy) [YMT]</source><source>Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list)</source><creator>Llorens-Fuster, Enrique ; Mazcuñán-Navarro, Eva M. ; Reich, Simeon</creator><creatorcontrib>Llorens-Fuster, Enrique ; Mazcuñán-Navarro, Eva M. ; Reich, Simeon</creatorcontrib><description>In every inner product space
H
the Ptolemy inequality holds: the product of the diagonals of a quadrilateral is less than or equal to the sum of the products of the opposite sides. In other words,
‖
x
−
y
‖
‖
z
−
w
‖
≤
‖
x
−
z
‖
‖
y
−
w
‖
+
‖
z
−
y
‖
‖
x
−
w
‖
for any points
w
,
x
,
y
,
z
in
H
. It is known that for each normed space
(
X
,
‖
⋅
‖
)
, there exists a constant
C
such that for any
w
,
x
,
y
,
z
∈
X
, we have
‖
x
−
y
‖
‖
z
−
w
‖
≤
C
(
‖
x
−
z
‖
‖
y
−
w
‖
+
‖
z
−
y
‖
‖
x
−
w
‖
)
. The smallest such
C
is called the Ptolemy constant of
X
and is denoted by
C
P
(
X
)
. We study the relationships between this constant and the geometry of the space
X
, and hence with metric fixed point theory. In particular, we relate the Ptolemy constant
C
P
to the Zbăganu constant
C
Z
, and prove that if
X
is a Banach space with
C
Z
(
X
)
<
(
1
+
3
)
/
2
, then
X
has (uniform) normal structure and therefore the fixed point property for nonexpansive mappings. We derive general lower and upper bounds for both
C
P
and
C
Z
, and calculate the precise values of these two constants for several normed spaces. We also present a number of conjectures and open problems.</description><identifier>ISSN: 0362-546X</identifier><identifier>EISSN: 1873-5215</identifier><identifier>DOI: 10.1016/j.na.2010.01.030</identifier><identifier>CODEN: NOANDD</identifier><language>eng</language><publisher>Amsterdam: Elsevier Ltd</publisher><subject>Banach space ; Constants ; Exact sciences and technology ; Functional analysis ; Inequalities ; Mapping ; Mathematical analysis ; Mathematics ; Nonlinearity ; Normal structure ; Ptolemy constant ; Quadrilaterals ; Sciences and techniques of general use ; Upper bounds ; Zbăganu constant</subject><ispartof>Nonlinear analysis, 2010-06, Vol.72 (11), p.3984-3993</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c423t-6e30197597e4b74d6a59bd8ba1e54343f0b2e895925427701e1a62b6221719d83</citedby><cites>FETCH-LOGICAL-c423t-6e30197597e4b74d6a59bd8ba1e54343f0b2e895925427701e1a62b6221719d83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0362546X10000416$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>314,777,781,3552,27906,27907,45985</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22580808$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Llorens-Fuster, Enrique</creatorcontrib><creatorcontrib>Mazcuñán-Navarro, Eva M.</creatorcontrib><creatorcontrib>Reich, Simeon</creatorcontrib><title>The Ptolemy and Zbăganu constants of normed spaces</title><title>Nonlinear analysis</title><description>In every inner product space
H
the Ptolemy inequality holds: the product of the diagonals of a quadrilateral is less than or equal to the sum of the products of the opposite sides. In other words,
‖
x
−
y
‖
‖
z
−
w
‖
≤
‖
x
−
z
‖
‖
y
−
w
‖
+
‖
z
−
y
‖
‖
x
−
w
‖
for any points
w
,
x
,
y
,
z
in
H
. It is known that for each normed space
(
X
,
‖
⋅
‖
)
, there exists a constant
C
such that for any
w
,
x
,
y
,
z
∈
X
, we have
‖
x
−
y
‖
‖
z
−
w
‖
≤
C
(
‖
x
−
z
‖
‖
y
−
w
‖
+
‖
z
−
y
‖
‖
x
−
w
‖
)
. The smallest such
C
is called the Ptolemy constant of
X
and is denoted by
C
P
(
X
)
. We study the relationships between this constant and the geometry of the space
X
, and hence with metric fixed point theory. In particular, we relate the Ptolemy constant
C
P
to the Zbăganu constant
C
Z
, and prove that if
X
is a Banach space with
C
Z
(
X
)
<
(
1
+
3
)
/
2
, then
X
has (uniform) normal structure and therefore the fixed point property for nonexpansive mappings. We derive general lower and upper bounds for both
C
P
and
C
Z
, and calculate the precise values of these two constants for several normed spaces. We also present a number of conjectures and open problems.</description><subject>Banach space</subject><subject>Constants</subject><subject>Exact sciences and technology</subject><subject>Functional analysis</subject><subject>Inequalities</subject><subject>Mapping</subject><subject>Mathematical analysis</subject><subject>Mathematics</subject><subject>Nonlinearity</subject><subject>Normal structure</subject><subject>Ptolemy constant</subject><subject>Quadrilaterals</subject><subject>Sciences and techniques of general use</subject><subject>Upper bounds</subject><subject>Zbăganu constant</subject><issn>0362-546X</issn><issn>1873-5215</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp1kE9Lw0AQxRdRsFbvHnMRvKTO7GZ3E29S_AcFPVQQL8tmM9GUdFN3U6Fnv5ofzJQWbzKHYeC9N7wfY-cIEwRUV4uJtxMOwwk4AQEHbIS5FqnkKA_ZCITiqczU6zE7iXEBAKiFGjEx_6Dkue9aWm4S66vkrfz5frd-nbjOx976PiZdnfguLKlK4so6iqfsqLZtpLP9HrOXu9v59CGdPd0_Tm9mqcu46FNFArDQstCUlTqrlJVFWeWlRZKZyEQNJae8kAWXGdcakNAqXirOUWNR5WLMLne5q9B9rin2ZtlER21rPXXraFBp5FyIoeaYwU7qQhdjoNqsQrO0YWMQzJaPWRhvzZaPATQDn8FysU-30dm2Dta7Jv75OJc5DDPornc6Gqp-NRRMdA15R1UTyPWm6pr_n_wCBt13ZQ</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Llorens-Fuster, Enrique</creator><creator>Mazcuñán-Navarro, Eva M.</creator><creator>Reich, Simeon</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20100601</creationdate><title>The Ptolemy and Zbăganu constants of normed spaces</title><author>Llorens-Fuster, Enrique ; Mazcuñán-Navarro, Eva M. ; Reich, Simeon</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c423t-6e30197597e4b74d6a59bd8ba1e54343f0b2e895925427701e1a62b6221719d83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Banach space</topic><topic>Constants</topic><topic>Exact sciences and technology</topic><topic>Functional analysis</topic><topic>Inequalities</topic><topic>Mapping</topic><topic>Mathematical analysis</topic><topic>Mathematics</topic><topic>Nonlinearity</topic><topic>Normal structure</topic><topic>Ptolemy constant</topic><topic>Quadrilaterals</topic><topic>Sciences and techniques of general use</topic><topic>Upper bounds</topic><topic>Zbăganu constant</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Llorens-Fuster, Enrique</creatorcontrib><creatorcontrib>Mazcuñán-Navarro, Eva M.</creatorcontrib><creatorcontrib>Reich, Simeon</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Nonlinear analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Llorens-Fuster, Enrique</au><au>Mazcuñán-Navarro, Eva M.</au><au>Reich, Simeon</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Ptolemy and Zbăganu constants of normed spaces</atitle><jtitle>Nonlinear analysis</jtitle><date>2010-06-01</date><risdate>2010</risdate><volume>72</volume><issue>11</issue><spage>3984</spage><epage>3993</epage><pages>3984-3993</pages><issn>0362-546X</issn><eissn>1873-5215</eissn><coden>NOANDD</coden><abstract>In every inner product space
H
the Ptolemy inequality holds: the product of the diagonals of a quadrilateral is less than or equal to the sum of the products of the opposite sides. In other words,
‖
x
−
y
‖
‖
z
−
w
‖
≤
‖
x
−
z
‖
‖
y
−
w
‖
+
‖
z
−
y
‖
‖
x
−
w
‖
for any points
w
,
x
,
y
,
z
in
H
. It is known that for each normed space
(
X
,
‖
⋅
‖
)
, there exists a constant
C
such that for any
w
,
x
,
y
,
z
∈
X
, we have
‖
x
−
y
‖
‖
z
−
w
‖
≤
C
(
‖
x
−
z
‖
‖
y
−
w
‖
+
‖
z
−
y
‖
‖
x
−
w
‖
)
. The smallest such
C
is called the Ptolemy constant of
X
and is denoted by
C
P
(
X
)
. We study the relationships between this constant and the geometry of the space
X
, and hence with metric fixed point theory. In particular, we relate the Ptolemy constant
C
P
to the Zbăganu constant
C
Z
, and prove that if
X
is a Banach space with
C
Z
(
X
)
<
(
1
+
3
)
/
2
, then
X
has (uniform) normal structure and therefore the fixed point property for nonexpansive mappings. We derive general lower and upper bounds for both
C
P
and
C
Z
, and calculate the precise values of these two constants for several normed spaces. We also present a number of conjectures and open problems.</abstract><cop>Amsterdam</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.na.2010.01.030</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0362-546X |
ispartof | Nonlinear analysis, 2010-06, Vol.72 (11), p.3984-3993 |
issn | 0362-546X 1873-5215 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671223387 |
source | Backfile Package - Mathematics (Legacy) [YMT]; Elsevier:Jisc Collections:Elsevier Read and Publish Agreement 2022-2024:Freedom Collection (Reading list) |
subjects | Banach space Constants Exact sciences and technology Functional analysis Inequalities Mapping Mathematical analysis Mathematics Nonlinearity Normal structure Ptolemy constant Quadrilaterals Sciences and techniques of general use Upper bounds Zbăganu constant |
title | The Ptolemy and Zbăganu constants of normed spaces |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T09%3A02%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Ptolemy%20and%20Zb%C4%83ganu%20constants%20of%20normed%20spaces&rft.jtitle=Nonlinear%20analysis&rft.au=Llorens-Fuster,%20Enrique&rft.date=2010-06-01&rft.volume=72&rft.issue=11&rft.spage=3984&rft.epage=3993&rft.pages=3984-3993&rft.issn=0362-546X&rft.eissn=1873-5215&rft.coden=NOANDD&rft_id=info:doi/10.1016/j.na.2010.01.030&rft_dat=%3Cproquest_cross%3E1671223387%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c423t-6e30197597e4b74d6a59bd8ba1e54343f0b2e895925427701e1a62b6221719d83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671223387&rft_id=info:pmid/&rfr_iscdi=true |