Loading…

A generalization of the Holditch Theorem for the planar homothetic motions

In this paper, under the one-parameter closed planar homothetic motion, a generalization of Holditch Theorem is obtained by using two different line segments (with fixed lengths) whose endpoints move along two different closed curves.[PUBLICATION ABSTRACT]

Saved in:
Bibliographic Details
Published in:Applications of mathematics (Prague) 2005-04, Vol.50 (2), p.87-91
Main Authors: Yuece, Salim, Kuruolu, Nuri
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2633-e890654ce14681633d5e762786122894abe500a5f1463ff1d331a16381e6eb7c3
cites cdi_FETCH-LOGICAL-c2633-e890654ce14681633d5e762786122894abe500a5f1463ff1d331a16381e6eb7c3
container_end_page 91
container_issue 2
container_start_page 87
container_title Applications of mathematics (Prague)
container_volume 50
creator Yuece, Salim
Kuruolu, Nuri
description In this paper, under the one-parameter closed planar homothetic motion, a generalization of Holditch Theorem is obtained by using two different line segments (with fixed lengths) whose endpoints move along two different closed curves.[PUBLICATION ABSTRACT]
doi_str_mv 10.1007/s10492-005-0005-3
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671223623</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671223623</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2633-e890654ce14681633d5e762786122894abe500a5f1463ff1d331a16381e6eb7c3</originalsourceid><addsrcrecordid>eNpdkD1PwzAQhi0EEqXwA9gsJpaAPxJ_jFUFLagSS5kt172QVElc7HSAX8-VMjGcz-d7_N7pJeSWswfOmH7MnJVWFIxVGHjIMzLhlRaF5cyekwkzShTaluySXOW8Q8YqYybkdUY_YIDku_bbj20caKzp2ABdxm7bjqGh6wZigp7WMf029p0ffKJN7COWYxsoXvBjviYXte8y3PzlKXl_flrPl8XqbfEyn62KIJSUBRjLVFUG4KUyHF-2FWgltFFcCGNLv4GKMV_V2Jd1zbdSco-c4aBgo4OckvuT7j7FzwPk0fVtDtDhXhAP2XGlUUkqIRG9-4fu4iENuJ3DkaWxxpQI8RMUUsw5Qe32qe19-nKcuaO57mSuQ1_d0Vwn5Q9b12qB</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>762489884</pqid></control><display><type>article</type><title>A generalization of the Holditch Theorem for the planar homothetic motions</title><source>ABI/INFORM Collection</source><source>Springer Nature</source><creator>Yuece, Salim ; Kuruolu, Nuri</creator><creatorcontrib>Yuece, Salim ; Kuruolu, Nuri</creatorcontrib><description>In this paper, under the one-parameter closed planar homothetic motion, a generalization of Holditch Theorem is obtained by using two different line segments (with fixed lengths) whose endpoints move along two different closed curves.[PUBLICATION ABSTRACT]</description><identifier>ISSN: 0862-7940</identifier><identifier>EISSN: 1572-9109</identifier><identifier>DOI: 10.1007/s10492-005-0005-3</identifier><language>eng</language><publisher>Prague: Springer Nature B.V</publisher><subject>Applications of mathematics ; Segments ; Studies ; Theorems</subject><ispartof>Applications of mathematics (Prague), 2005-04, Vol.50 (2), p.87-91</ispartof><rights>Springer Science+Business Media, Inc. 2005</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2633-e890654ce14681633d5e762786122894abe500a5f1463ff1d331a16381e6eb7c3</citedby><cites>FETCH-LOGICAL-c2633-e890654ce14681633d5e762786122894abe500a5f1463ff1d331a16381e6eb7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.proquest.com/docview/762489884?pq-origsite=primo$$EHTML$$P50$$Gproquest$$H</linktohtml><link.rule.ids>314,780,784,11687,27923,27924,36059,36060,44362</link.rule.ids></links><search><creatorcontrib>Yuece, Salim</creatorcontrib><creatorcontrib>Kuruolu, Nuri</creatorcontrib><title>A generalization of the Holditch Theorem for the planar homothetic motions</title><title>Applications of mathematics (Prague)</title><description>In this paper, under the one-parameter closed planar homothetic motion, a generalization of Holditch Theorem is obtained by using two different line segments (with fixed lengths) whose endpoints move along two different closed curves.[PUBLICATION ABSTRACT]</description><subject>Applications of mathematics</subject><subject>Segments</subject><subject>Studies</subject><subject>Theorems</subject><issn>0862-7940</issn><issn>1572-9109</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2005</creationdate><recordtype>article</recordtype><sourceid>M0C</sourceid><recordid>eNpdkD1PwzAQhi0EEqXwA9gsJpaAPxJ_jFUFLagSS5kt172QVElc7HSAX8-VMjGcz-d7_N7pJeSWswfOmH7MnJVWFIxVGHjIMzLhlRaF5cyekwkzShTaluySXOW8Q8YqYybkdUY_YIDku_bbj20caKzp2ABdxm7bjqGh6wZigp7WMf029p0ffKJN7COWYxsoXvBjviYXte8y3PzlKXl_flrPl8XqbfEyn62KIJSUBRjLVFUG4KUyHF-2FWgltFFcCGNLv4GKMV_V2Jd1zbdSco-c4aBgo4OckvuT7j7FzwPk0fVtDtDhXhAP2XGlUUkqIRG9-4fu4iENuJ3DkaWxxpQI8RMUUsw5Qe32qe19-nKcuaO57mSuQ1_d0Vwn5Q9b12qB</recordid><startdate>20050401</startdate><enddate>20050401</enddate><creator>Yuece, Salim</creator><creator>Kuruolu, Nuri</creator><general>Springer Nature B.V</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>88I</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>KR7</scope><scope>L.-</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>M2O</scope><scope>M2P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PADUT</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYYUZ</scope><scope>Q9U</scope></search><sort><creationdate>20050401</creationdate><title>A generalization of the Holditch Theorem for the planar homothetic motions</title><author>Yuece, Salim ; Kuruolu, Nuri</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2633-e890654ce14681633d5e762786122894abe500a5f1463ff1d331a16381e6eb7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2005</creationdate><topic>Applications of mathematics</topic><topic>Segments</topic><topic>Studies</topic><topic>Theorems</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yuece, Salim</creatorcontrib><creatorcontrib>Kuruolu, Nuri</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ABI/INFORM Collection</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ABI/INFORM Professional Advanced</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Collection</collection><collection>Computing Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Research Library China</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><jtitle>Applications of mathematics (Prague)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yuece, Salim</au><au>Kuruolu, Nuri</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A generalization of the Holditch Theorem for the planar homothetic motions</atitle><jtitle>Applications of mathematics (Prague)</jtitle><date>2005-04-01</date><risdate>2005</risdate><volume>50</volume><issue>2</issue><spage>87</spage><epage>91</epage><pages>87-91</pages><issn>0862-7940</issn><eissn>1572-9109</eissn><abstract>In this paper, under the one-parameter closed planar homothetic motion, a generalization of Holditch Theorem is obtained by using two different line segments (with fixed lengths) whose endpoints move along two different closed curves.[PUBLICATION ABSTRACT]</abstract><cop>Prague</cop><pub>Springer Nature B.V</pub><doi>10.1007/s10492-005-0005-3</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0862-7940
ispartof Applications of mathematics (Prague), 2005-04, Vol.50 (2), p.87-91
issn 0862-7940
1572-9109
language eng
recordid cdi_proquest_miscellaneous_1671223623
source ABI/INFORM Collection; Springer Nature
subjects Applications of mathematics
Segments
Studies
Theorems
title A generalization of the Holditch Theorem for the planar homothetic motions
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T15%3A29%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20generalization%20of%20the%20Holditch%20Theorem%20for%20the%20planar%20homothetic%20motions&rft.jtitle=Applications%20of%20mathematics%20(Prague)&rft.au=Yuece,%20Salim&rft.date=2005-04-01&rft.volume=50&rft.issue=2&rft.spage=87&rft.epage=91&rft.pages=87-91&rft.issn=0862-7940&rft.eissn=1572-9109&rft_id=info:doi/10.1007/s10492-005-0005-3&rft_dat=%3Cproquest_cross%3E1671223623%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2633-e890654ce14681633d5e762786122894abe500a5f1463ff1d331a16381e6eb7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=762489884&rft_id=info:pmid/&rfr_iscdi=true