Loading…
Thermal convection in a rotating viscoelastic fluid saturated porous layer
Linear and nonlinear stability of a rotating viscoelastic fluid saturated porous layer heated from below is studied analytically. The modified Darcy–Oldroyd model that includes the time derivative and Coriolis terms is employed as a momentum equation. The onset criterion for both stationary and osci...
Saved in:
Published in: | International journal of heat and mass transfer 2010-12, Vol.53 (25), p.5747-5756 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c405t-fefe3ddd7f661144c3a58a504992a9884403bb380fcad03adcb6d6f14516a6313 |
---|---|
cites | cdi_FETCH-LOGICAL-c405t-fefe3ddd7f661144c3a58a504992a9884403bb380fcad03adcb6d6f14516a6313 |
container_end_page | 5756 |
container_issue | 25 |
container_start_page | 5747 |
container_title | International journal of heat and mass transfer |
container_volume | 53 |
creator | Malashetty, M.S. Swamy, M.S. Sidram, W. |
description | Linear and nonlinear stability of a rotating viscoelastic fluid saturated porous layer heated from below is studied analytically. The modified Darcy–Oldroyd model that includes the time derivative and Coriolis terms is employed as a momentum equation. The onset criterion for both stationary and oscillatory convection is derived as a function of Taylor number, Darcy–Prandtl number and viscoelastic parameters. There is a competition between the processes of rotation, viscous relaxation and thermal diffusion that causes the convection to set in through oscillatory mode rather than stationary. The rotation inhibits the onset of convection in both stationary and oscillatory modes. The stress relaxation parameter destabilizes the system towards the oscillatory mode, while the strain retardation parameter enhances the stability. The effect of Darcy–Prandtl number on the stability of the system is also investigated. The nonlinear theory is based on the truncated representation of Fourier series method. The effect of rotation, stress relaxation and strain-retardation time and also the Darcy–Prandtl number on the transient heat transfer is presented graphically. |
doi_str_mv | 10.1016/j.ijheatmasstransfer.2010.08.008 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671226086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931010004540</els_id><sourcerecordid>1671226086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-fefe3ddd7f661144c3a58a504992a9884403bb380fcad03adcb6d6f14516a6313</originalsourceid><addsrcrecordid>eNqNkE1rGzEQhkVoIW6a_6BLIJd1Rqu1VntLMf0KhlycsxhLo0RmvXIl2eB_XxmHXnLpaRjm4Z2Zh7F7AXMBQj1s52H7Rlh2mHNJOGVPad5CHYOeA-grNhO6H5pW6OETmwGIvhmkgGv2JeftuYVOzdjT-o3SDkdu43QkW0KceJg48hQLljC98mPINtKIuQTL_XgIjmcsh4SFHN_HFA-Zj3ii9JV99jhmun2vN-zlx_f18lezev75e_lt1dgOFqXx5Ek653qvlBBdZyUuNC6gG4YWB627DuRmIzV4iw4kOrtRTnnRLYRCJYW8YfeX3H2Kfw6Ui9nVE2kccaJ6jBGqF22rQKuKPl5Qm2LOibzZp7DDdDICzFmj2ZqPGs1ZowFtqsYacfe-DbPF0VfGhvwvp5US-naAyj1dOKqvH0NNyTbQZMmFVL0aF8P_L_0LvuqWQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671226086</pqid></control><display><type>article</type><title>Thermal convection in a rotating viscoelastic fluid saturated porous layer</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Malashetty, M.S. ; Swamy, M.S. ; Sidram, W.</creator><creatorcontrib>Malashetty, M.S. ; Swamy, M.S. ; Sidram, W.</creatorcontrib><description>Linear and nonlinear stability of a rotating viscoelastic fluid saturated porous layer heated from below is studied analytically. The modified Darcy–Oldroyd model that includes the time derivative and Coriolis terms is employed as a momentum equation. The onset criterion for both stationary and oscillatory convection is derived as a function of Taylor number, Darcy–Prandtl number and viscoelastic parameters. There is a competition between the processes of rotation, viscous relaxation and thermal diffusion that causes the convection to set in through oscillatory mode rather than stationary. The rotation inhibits the onset of convection in both stationary and oscillatory modes. The stress relaxation parameter destabilizes the system towards the oscillatory mode, while the strain retardation parameter enhances the stability. The effect of Darcy–Prandtl number on the stability of the system is also investigated. The nonlinear theory is based on the truncated representation of Fourier series method. The effect of rotation, stress relaxation and strain-retardation time and also the Darcy–Prandtl number on the transient heat transfer is presented graphically.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2010.08.008</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Buoyancy-driven instability ; Convection ; Convection modes ; Exact sciences and technology ; Flows through porous media ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic stability ; Mathematical analysis ; Mathematical models ; Non-newtonian fluid flows ; Nonhomogeneous flows ; Nonlinearity ; Oscillatory stationary convection ; Physics ; Porous medium ; Rotation ; Stability ; Stress relaxation ; Thermal convection ; Viscoelastic fluid ; Viscoelastic fluids</subject><ispartof>International journal of heat and mass transfer, 2010-12, Vol.53 (25), p.5747-5756</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-fefe3ddd7f661144c3a58a504992a9884403bb380fcad03adcb6d6f14516a6313</citedby><cites>FETCH-LOGICAL-c405t-fefe3ddd7f661144c3a58a504992a9884403bb380fcad03adcb6d6f14516a6313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=23307290$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Malashetty, M.S.</creatorcontrib><creatorcontrib>Swamy, M.S.</creatorcontrib><creatorcontrib>Sidram, W.</creatorcontrib><title>Thermal convection in a rotating viscoelastic fluid saturated porous layer</title><title>International journal of heat and mass transfer</title><description>Linear and nonlinear stability of a rotating viscoelastic fluid saturated porous layer heated from below is studied analytically. The modified Darcy–Oldroyd model that includes the time derivative and Coriolis terms is employed as a momentum equation. The onset criterion for both stationary and oscillatory convection is derived as a function of Taylor number, Darcy–Prandtl number and viscoelastic parameters. There is a competition between the processes of rotation, viscous relaxation and thermal diffusion that causes the convection to set in through oscillatory mode rather than stationary. The rotation inhibits the onset of convection in both stationary and oscillatory modes. The stress relaxation parameter destabilizes the system towards the oscillatory mode, while the strain retardation parameter enhances the stability. The effect of Darcy–Prandtl number on the stability of the system is also investigated. The nonlinear theory is based on the truncated representation of Fourier series method. The effect of rotation, stress relaxation and strain-retardation time and also the Darcy–Prandtl number on the transient heat transfer is presented graphically.</description><subject>Buoyancy-driven instability</subject><subject>Convection</subject><subject>Convection modes</subject><subject>Exact sciences and technology</subject><subject>Flows through porous media</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic stability</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Non-newtonian fluid flows</subject><subject>Nonhomogeneous flows</subject><subject>Nonlinearity</subject><subject>Oscillatory stationary convection</subject><subject>Physics</subject><subject>Porous medium</subject><subject>Rotation</subject><subject>Stability</subject><subject>Stress relaxation</subject><subject>Thermal convection</subject><subject>Viscoelastic fluid</subject><subject>Viscoelastic fluids</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkE1rGzEQhkVoIW6a_6BLIJd1Rqu1VntLMf0KhlycsxhLo0RmvXIl2eB_XxmHXnLpaRjm4Z2Zh7F7AXMBQj1s52H7Rlh2mHNJOGVPad5CHYOeA-grNhO6H5pW6OETmwGIvhmkgGv2JeftuYVOzdjT-o3SDkdu43QkW0KceJg48hQLljC98mPINtKIuQTL_XgIjmcsh4SFHN_HFA-Zj3ii9JV99jhmun2vN-zlx_f18lezev75e_lt1dgOFqXx5Ek653qvlBBdZyUuNC6gG4YWB627DuRmIzV4iw4kOrtRTnnRLYRCJYW8YfeX3H2Kfw6Ui9nVE2kccaJ6jBGqF22rQKuKPl5Qm2LOibzZp7DDdDICzFmj2ZqPGs1ZowFtqsYacfe-DbPF0VfGhvwvp5US-naAyj1dOKqvH0NNyTbQZMmFVL0aF8P_L_0LvuqWQw</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Malashetty, M.S.</creator><creator>Swamy, M.S.</creator><creator>Sidram, W.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20101201</creationdate><title>Thermal convection in a rotating viscoelastic fluid saturated porous layer</title><author>Malashetty, M.S. ; Swamy, M.S. ; Sidram, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-fefe3ddd7f661144c3a58a504992a9884403bb380fcad03adcb6d6f14516a6313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Buoyancy-driven instability</topic><topic>Convection</topic><topic>Convection modes</topic><topic>Exact sciences and technology</topic><topic>Flows through porous media</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic stability</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Non-newtonian fluid flows</topic><topic>Nonhomogeneous flows</topic><topic>Nonlinearity</topic><topic>Oscillatory stationary convection</topic><topic>Physics</topic><topic>Porous medium</topic><topic>Rotation</topic><topic>Stability</topic><topic>Stress relaxation</topic><topic>Thermal convection</topic><topic>Viscoelastic fluid</topic><topic>Viscoelastic fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malashetty, M.S.</creatorcontrib><creatorcontrib>Swamy, M.S.</creatorcontrib><creatorcontrib>Sidram, W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malashetty, M.S.</au><au>Swamy, M.S.</au><au>Sidram, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal convection in a rotating viscoelastic fluid saturated porous layer</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>53</volume><issue>25</issue><spage>5747</spage><epage>5756</epage><pages>5747-5756</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>Linear and nonlinear stability of a rotating viscoelastic fluid saturated porous layer heated from below is studied analytically. The modified Darcy–Oldroyd model that includes the time derivative and Coriolis terms is employed as a momentum equation. The onset criterion for both stationary and oscillatory convection is derived as a function of Taylor number, Darcy–Prandtl number and viscoelastic parameters. There is a competition between the processes of rotation, viscous relaxation and thermal diffusion that causes the convection to set in through oscillatory mode rather than stationary. The rotation inhibits the onset of convection in both stationary and oscillatory modes. The stress relaxation parameter destabilizes the system towards the oscillatory mode, while the strain retardation parameter enhances the stability. The effect of Darcy–Prandtl number on the stability of the system is also investigated. The nonlinear theory is based on the truncated representation of Fourier series method. The effect of rotation, stress relaxation and strain-retardation time and also the Darcy–Prandtl number on the transient heat transfer is presented graphically.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2010.08.008</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0017-9310 |
ispartof | International journal of heat and mass transfer, 2010-12, Vol.53 (25), p.5747-5756 |
issn | 0017-9310 1879-2189 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671226086 |
source | ScienceDirect Freedom Collection 2022-2024 |
subjects | Buoyancy-driven instability Convection Convection modes Exact sciences and technology Flows through porous media Fluid dynamics Fundamental areas of phenomenology (including applications) Hydrodynamic stability Mathematical analysis Mathematical models Non-newtonian fluid flows Nonhomogeneous flows Nonlinearity Oscillatory stationary convection Physics Porous medium Rotation Stability Stress relaxation Thermal convection Viscoelastic fluid Viscoelastic fluids |
title | Thermal convection in a rotating viscoelastic fluid saturated porous layer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20convection%20in%20a%20rotating%20viscoelastic%20fluid%20saturated%20porous%20layer&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Malashetty,%20M.S.&rft.date=2010-12-01&rft.volume=53&rft.issue=25&rft.spage=5747&rft.epage=5756&rft.pages=5747-5756&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2010.08.008&rft_dat=%3Cproquest_cross%3E1671226086%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-fefe3ddd7f661144c3a58a504992a9884403bb380fcad03adcb6d6f14516a6313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671226086&rft_id=info:pmid/&rfr_iscdi=true |