Loading…

Thermal convection in a rotating viscoelastic fluid saturated porous layer

Linear and nonlinear stability of a rotating viscoelastic fluid saturated porous layer heated from below is studied analytically. The modified Darcy–Oldroyd model that includes the time derivative and Coriolis terms is employed as a momentum equation. The onset criterion for both stationary and osci...

Full description

Saved in:
Bibliographic Details
Published in:International journal of heat and mass transfer 2010-12, Vol.53 (25), p.5747-5756
Main Authors: Malashetty, M.S., Swamy, M.S., Sidram, W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c405t-fefe3ddd7f661144c3a58a504992a9884403bb380fcad03adcb6d6f14516a6313
cites cdi_FETCH-LOGICAL-c405t-fefe3ddd7f661144c3a58a504992a9884403bb380fcad03adcb6d6f14516a6313
container_end_page 5756
container_issue 25
container_start_page 5747
container_title International journal of heat and mass transfer
container_volume 53
creator Malashetty, M.S.
Swamy, M.S.
Sidram, W.
description Linear and nonlinear stability of a rotating viscoelastic fluid saturated porous layer heated from below is studied analytically. The modified Darcy–Oldroyd model that includes the time derivative and Coriolis terms is employed as a momentum equation. The onset criterion for both stationary and oscillatory convection is derived as a function of Taylor number, Darcy–Prandtl number and viscoelastic parameters. There is a competition between the processes of rotation, viscous relaxation and thermal diffusion that causes the convection to set in through oscillatory mode rather than stationary. The rotation inhibits the onset of convection in both stationary and oscillatory modes. The stress relaxation parameter destabilizes the system towards the oscillatory mode, while the strain retardation parameter enhances the stability. The effect of Darcy–Prandtl number on the stability of the system is also investigated. The nonlinear theory is based on the truncated representation of Fourier series method. The effect of rotation, stress relaxation and strain-retardation time and also the Darcy–Prandtl number on the transient heat transfer is presented graphically.
doi_str_mv 10.1016/j.ijheatmasstransfer.2010.08.008
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671226086</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0017931010004540</els_id><sourcerecordid>1671226086</sourcerecordid><originalsourceid>FETCH-LOGICAL-c405t-fefe3ddd7f661144c3a58a504992a9884403bb380fcad03adcb6d6f14516a6313</originalsourceid><addsrcrecordid>eNqNkE1rGzEQhkVoIW6a_6BLIJd1Rqu1VntLMf0KhlycsxhLo0RmvXIl2eB_XxmHXnLpaRjm4Z2Zh7F7AXMBQj1s52H7Rlh2mHNJOGVPad5CHYOeA-grNhO6H5pW6OETmwGIvhmkgGv2JeftuYVOzdjT-o3SDkdu43QkW0KceJg48hQLljC98mPINtKIuQTL_XgIjmcsh4SFHN_HFA-Zj3ii9JV99jhmun2vN-zlx_f18lezev75e_lt1dgOFqXx5Ek653qvlBBdZyUuNC6gG4YWB627DuRmIzV4iw4kOrtRTnnRLYRCJYW8YfeX3H2Kfw6Ui9nVE2kccaJ6jBGqF22rQKuKPl5Qm2LOibzZp7DDdDICzFmj2ZqPGs1ZowFtqsYacfe-DbPF0VfGhvwvp5US-naAyj1dOKqvH0NNyTbQZMmFVL0aF8P_L_0LvuqWQw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671226086</pqid></control><display><type>article</type><title>Thermal convection in a rotating viscoelastic fluid saturated porous layer</title><source>ScienceDirect Freedom Collection 2022-2024</source><creator>Malashetty, M.S. ; Swamy, M.S. ; Sidram, W.</creator><creatorcontrib>Malashetty, M.S. ; Swamy, M.S. ; Sidram, W.</creatorcontrib><description>Linear and nonlinear stability of a rotating viscoelastic fluid saturated porous layer heated from below is studied analytically. The modified Darcy–Oldroyd model that includes the time derivative and Coriolis terms is employed as a momentum equation. The onset criterion for both stationary and oscillatory convection is derived as a function of Taylor number, Darcy–Prandtl number and viscoelastic parameters. There is a competition between the processes of rotation, viscous relaxation and thermal diffusion that causes the convection to set in through oscillatory mode rather than stationary. The rotation inhibits the onset of convection in both stationary and oscillatory modes. The stress relaxation parameter destabilizes the system towards the oscillatory mode, while the strain retardation parameter enhances the stability. The effect of Darcy–Prandtl number on the stability of the system is also investigated. The nonlinear theory is based on the truncated representation of Fourier series method. The effect of rotation, stress relaxation and strain-retardation time and also the Darcy–Prandtl number on the transient heat transfer is presented graphically.</description><identifier>ISSN: 0017-9310</identifier><identifier>EISSN: 1879-2189</identifier><identifier>DOI: 10.1016/j.ijheatmasstransfer.2010.08.008</identifier><identifier>CODEN: IJHMAK</identifier><language>eng</language><publisher>Kidlington: Elsevier Ltd</publisher><subject>Buoyancy-driven instability ; Convection ; Convection modes ; Exact sciences and technology ; Flows through porous media ; Fluid dynamics ; Fundamental areas of phenomenology (including applications) ; Hydrodynamic stability ; Mathematical analysis ; Mathematical models ; Non-newtonian fluid flows ; Nonhomogeneous flows ; Nonlinearity ; Oscillatory stationary convection ; Physics ; Porous medium ; Rotation ; Stability ; Stress relaxation ; Thermal convection ; Viscoelastic fluid ; Viscoelastic fluids</subject><ispartof>International journal of heat and mass transfer, 2010-12, Vol.53 (25), p.5747-5756</ispartof><rights>2010 Elsevier Ltd</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c405t-fefe3ddd7f661144c3a58a504992a9884403bb380fcad03adcb6d6f14516a6313</citedby><cites>FETCH-LOGICAL-c405t-fefe3ddd7f661144c3a58a504992a9884403bb380fcad03adcb6d6f14516a6313</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=23307290$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Malashetty, M.S.</creatorcontrib><creatorcontrib>Swamy, M.S.</creatorcontrib><creatorcontrib>Sidram, W.</creatorcontrib><title>Thermal convection in a rotating viscoelastic fluid saturated porous layer</title><title>International journal of heat and mass transfer</title><description>Linear and nonlinear stability of a rotating viscoelastic fluid saturated porous layer heated from below is studied analytically. The modified Darcy–Oldroyd model that includes the time derivative and Coriolis terms is employed as a momentum equation. The onset criterion for both stationary and oscillatory convection is derived as a function of Taylor number, Darcy–Prandtl number and viscoelastic parameters. There is a competition between the processes of rotation, viscous relaxation and thermal diffusion that causes the convection to set in through oscillatory mode rather than stationary. The rotation inhibits the onset of convection in both stationary and oscillatory modes. The stress relaxation parameter destabilizes the system towards the oscillatory mode, while the strain retardation parameter enhances the stability. The effect of Darcy–Prandtl number on the stability of the system is also investigated. The nonlinear theory is based on the truncated representation of Fourier series method. The effect of rotation, stress relaxation and strain-retardation time and also the Darcy–Prandtl number on the transient heat transfer is presented graphically.</description><subject>Buoyancy-driven instability</subject><subject>Convection</subject><subject>Convection modes</subject><subject>Exact sciences and technology</subject><subject>Flows through porous media</subject><subject>Fluid dynamics</subject><subject>Fundamental areas of phenomenology (including applications)</subject><subject>Hydrodynamic stability</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Non-newtonian fluid flows</subject><subject>Nonhomogeneous flows</subject><subject>Nonlinearity</subject><subject>Oscillatory stationary convection</subject><subject>Physics</subject><subject>Porous medium</subject><subject>Rotation</subject><subject>Stability</subject><subject>Stress relaxation</subject><subject>Thermal convection</subject><subject>Viscoelastic fluid</subject><subject>Viscoelastic fluids</subject><issn>0017-9310</issn><issn>1879-2189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqNkE1rGzEQhkVoIW6a_6BLIJd1Rqu1VntLMf0KhlycsxhLo0RmvXIl2eB_XxmHXnLpaRjm4Z2Zh7F7AXMBQj1s52H7Rlh2mHNJOGVPad5CHYOeA-grNhO6H5pW6OETmwGIvhmkgGv2JeftuYVOzdjT-o3SDkdu43QkW0KceJg48hQLljC98mPINtKIuQTL_XgIjmcsh4SFHN_HFA-Zj3ii9JV99jhmun2vN-zlx_f18lezev75e_lt1dgOFqXx5Ek653qvlBBdZyUuNC6gG4YWB627DuRmIzV4iw4kOrtRTnnRLYRCJYW8YfeX3H2Kfw6Ui9nVE2kccaJ6jBGqF22rQKuKPl5Qm2LOibzZp7DDdDICzFmj2ZqPGs1ZowFtqsYacfe-DbPF0VfGhvwvp5US-naAyj1dOKqvH0NNyTbQZMmFVL0aF8P_L_0LvuqWQw</recordid><startdate>20101201</startdate><enddate>20101201</enddate><creator>Malashetty, M.S.</creator><creator>Swamy, M.S.</creator><creator>Sidram, W.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>H8D</scope><scope>KR7</scope><scope>L7M</scope></search><sort><creationdate>20101201</creationdate><title>Thermal convection in a rotating viscoelastic fluid saturated porous layer</title><author>Malashetty, M.S. ; Swamy, M.S. ; Sidram, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c405t-fefe3ddd7f661144c3a58a504992a9884403bb380fcad03adcb6d6f14516a6313</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Buoyancy-driven instability</topic><topic>Convection</topic><topic>Convection modes</topic><topic>Exact sciences and technology</topic><topic>Flows through porous media</topic><topic>Fluid dynamics</topic><topic>Fundamental areas of phenomenology (including applications)</topic><topic>Hydrodynamic stability</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Non-newtonian fluid flows</topic><topic>Nonhomogeneous flows</topic><topic>Nonlinearity</topic><topic>Oscillatory stationary convection</topic><topic>Physics</topic><topic>Porous medium</topic><topic>Rotation</topic><topic>Stability</topic><topic>Stress relaxation</topic><topic>Thermal convection</topic><topic>Viscoelastic fluid</topic><topic>Viscoelastic fluids</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Malashetty, M.S.</creatorcontrib><creatorcontrib>Swamy, M.S.</creatorcontrib><creatorcontrib>Sidram, W.</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>International journal of heat and mass transfer</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Malashetty, M.S.</au><au>Swamy, M.S.</au><au>Sidram, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal convection in a rotating viscoelastic fluid saturated porous layer</atitle><jtitle>International journal of heat and mass transfer</jtitle><date>2010-12-01</date><risdate>2010</risdate><volume>53</volume><issue>25</issue><spage>5747</spage><epage>5756</epage><pages>5747-5756</pages><issn>0017-9310</issn><eissn>1879-2189</eissn><coden>IJHMAK</coden><abstract>Linear and nonlinear stability of a rotating viscoelastic fluid saturated porous layer heated from below is studied analytically. The modified Darcy–Oldroyd model that includes the time derivative and Coriolis terms is employed as a momentum equation. The onset criterion for both stationary and oscillatory convection is derived as a function of Taylor number, Darcy–Prandtl number and viscoelastic parameters. There is a competition between the processes of rotation, viscous relaxation and thermal diffusion that causes the convection to set in through oscillatory mode rather than stationary. The rotation inhibits the onset of convection in both stationary and oscillatory modes. The stress relaxation parameter destabilizes the system towards the oscillatory mode, while the strain retardation parameter enhances the stability. The effect of Darcy–Prandtl number on the stability of the system is also investigated. The nonlinear theory is based on the truncated representation of Fourier series method. The effect of rotation, stress relaxation and strain-retardation time and also the Darcy–Prandtl number on the transient heat transfer is presented graphically.</abstract><cop>Kidlington</cop><pub>Elsevier Ltd</pub><doi>10.1016/j.ijheatmasstransfer.2010.08.008</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0017-9310
ispartof International journal of heat and mass transfer, 2010-12, Vol.53 (25), p.5747-5756
issn 0017-9310
1879-2189
language eng
recordid cdi_proquest_miscellaneous_1671226086
source ScienceDirect Freedom Collection 2022-2024
subjects Buoyancy-driven instability
Convection
Convection modes
Exact sciences and technology
Flows through porous media
Fluid dynamics
Fundamental areas of phenomenology (including applications)
Hydrodynamic stability
Mathematical analysis
Mathematical models
Non-newtonian fluid flows
Nonhomogeneous flows
Nonlinearity
Oscillatory stationary convection
Physics
Porous medium
Rotation
Stability
Stress relaxation
Thermal convection
Viscoelastic fluid
Viscoelastic fluids
title Thermal convection in a rotating viscoelastic fluid saturated porous layer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T06%3A38%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20convection%20in%20a%20rotating%20viscoelastic%20fluid%20saturated%20porous%20layer&rft.jtitle=International%20journal%20of%20heat%20and%20mass%20transfer&rft.au=Malashetty,%20M.S.&rft.date=2010-12-01&rft.volume=53&rft.issue=25&rft.spage=5747&rft.epage=5756&rft.pages=5747-5756&rft.issn=0017-9310&rft.eissn=1879-2189&rft.coden=IJHMAK&rft_id=info:doi/10.1016/j.ijheatmasstransfer.2010.08.008&rft_dat=%3Cproquest_cross%3E1671226086%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c405t-fefe3ddd7f661144c3a58a504992a9884403bb380fcad03adcb6d6f14516a6313%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671226086&rft_id=info:pmid/&rfr_iscdi=true