Loading…
A parameter-uniform numerical method for a singularly perturbed two parameter elliptic problem
In this paper, a class of singularly perturbed elliptic partial differential equations posed on a rectangular domain is studied. The differential equation contains two singular perturbation parameters. The solutions of these singularly perturbed problems are decomposed into a sum of regular, boundar...
Saved in:
Published in: | Advances in computational mathematics 2011-07, Vol.35 (1), p.57-82 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c321t-679d4bf93beec1d40d6f55d4c18657b0f242d3a15df3803dfcb69765b4e1418b3 |
---|---|
cites | cdi_FETCH-LOGICAL-c321t-679d4bf93beec1d40d6f55d4c18657b0f242d3a15df3803dfcb69765b4e1418b3 |
container_end_page | 82 |
container_issue | 1 |
container_start_page | 57 |
container_title | Advances in computational mathematics |
container_volume | 35 |
creator | O’Riordan, E. Pickett, M. L. |
description | In this paper, a class of singularly perturbed elliptic partial differential equations posed on a rectangular domain is studied. The differential equation contains two singular perturbation parameters. The solutions of these singularly perturbed problems are decomposed into a sum of regular, boundary layer and corner layer components. Parameter-explicit bounds on the derivatives of each of these components are derived. A numerical algorithm based on an upwind finite difference operator and a tensor product of piecewise-uniform Shishkin meshes is analysed. Parameter-uniform asymptotic error bounds for the numerical approximations are established. |
doi_str_mv | 10.1007/s10444-010-9164-1 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671226648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671226648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-679d4bf93beec1d40d6f55d4c18657b0f242d3a15df3803dfcb69765b4e1418b3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHdZuonmpmnSLofBFwhudGvIc-zQl0mLzL83QwV3ru7lcM59fAhdA70FSuVdAso5JxQoqUFwAidoBaVkpM76ae4p1ESCqM7RRUp7SmktZLlCHxs86qg7P_lI5r4JQ-xwP3c-Nla3OOufg8NZxRqnpt_NrY7tAY8-TnM03uHpe_ibgH3bNuPUWDzGwbS-u0RnQbfJX_3WNXp_uH_bPpGX18fn7eaF2ILBRISsHTehLoz3FhynToSydNxCJUppaGCcuUJD6UJR0cIFa0QtRWm4Bw6VKdboZpmb937NPk2qa5LN1-jeD3NSICQwJgSvshUWq41DStEHNcam0_GggKojS7WwVJmlOrJUkDNsyaTs7Xc-qv0wxz5_9E_oBwOSeII</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671226648</pqid></control><display><type>article</type><title>A parameter-uniform numerical method for a singularly perturbed two parameter elliptic problem</title><source>Springer Nature</source><creator>O’Riordan, E. ; Pickett, M. L.</creator><creatorcontrib>O’Riordan, E. ; Pickett, M. L.</creatorcontrib><description>In this paper, a class of singularly perturbed elliptic partial differential equations posed on a rectangular domain is studied. The differential equation contains two singular perturbation parameters. The solutions of these singularly perturbed problems are decomposed into a sum of regular, boundary layer and corner layer components. Parameter-explicit bounds on the derivatives of each of these components are derived. A numerical algorithm based on an upwind finite difference operator and a tensor product of piecewise-uniform Shishkin meshes is analysed. Parameter-uniform asymptotic error bounds for the numerical approximations are established.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-010-9164-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Approximation ; Asymptotic properties ; Computational Mathematics and Numerical Analysis ; Computational Science and Engineering ; Corners ; Derivatives ; Differential equations ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Numerical analysis ; Visualization</subject><ispartof>Advances in computational mathematics, 2011-07, Vol.35 (1), p.57-82</ispartof><rights>Springer Science+Business Media, LLC. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-679d4bf93beec1d40d6f55d4c18657b0f242d3a15df3803dfcb69765b4e1418b3</citedby><cites>FETCH-LOGICAL-c321t-679d4bf93beec1d40d6f55d4c18657b0f242d3a15df3803dfcb69765b4e1418b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>O’Riordan, E.</creatorcontrib><creatorcontrib>Pickett, M. L.</creatorcontrib><title>A parameter-uniform numerical method for a singularly perturbed two parameter elliptic problem</title><title>Advances in computational mathematics</title><addtitle>Adv Comput Math</addtitle><description>In this paper, a class of singularly perturbed elliptic partial differential equations posed on a rectangular domain is studied. The differential equation contains two singular perturbation parameters. The solutions of these singularly perturbed problems are decomposed into a sum of regular, boundary layer and corner layer components. Parameter-explicit bounds on the derivatives of each of these components are derived. A numerical algorithm based on an upwind finite difference operator and a tensor product of piecewise-uniform Shishkin meshes is analysed. Parameter-uniform asymptotic error bounds for the numerical approximations are established.</description><subject>Approximation</subject><subject>Asymptotic properties</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computational Science and Engineering</subject><subject>Corners</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical analysis</subject><subject>Visualization</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHdZuonmpmnSLofBFwhudGvIc-zQl0mLzL83QwV3ru7lcM59fAhdA70FSuVdAso5JxQoqUFwAidoBaVkpM76ae4p1ESCqM7RRUp7SmktZLlCHxs86qg7P_lI5r4JQ-xwP3c-Nla3OOufg8NZxRqnpt_NrY7tAY8-TnM03uHpe_ibgH3bNuPUWDzGwbS-u0RnQbfJX_3WNXp_uH_bPpGX18fn7eaF2ILBRISsHTehLoz3FhynToSydNxCJUppaGCcuUJD6UJR0cIFa0QtRWm4Bw6VKdboZpmb937NPk2qa5LN1-jeD3NSICQwJgSvshUWq41DStEHNcam0_GggKojS7WwVJmlOrJUkDNsyaTs7Xc-qv0wxz5_9E_oBwOSeII</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>O’Riordan, E.</creator><creator>Pickett, M. L.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>A parameter-uniform numerical method for a singularly perturbed two parameter elliptic problem</title><author>O’Riordan, E. ; Pickett, M. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-679d4bf93beec1d40d6f55d4c18657b0f242d3a15df3803dfcb69765b4e1418b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Asymptotic properties</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computational Science and Engineering</topic><topic>Corners</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O’Riordan, E.</creatorcontrib><creatorcontrib>Pickett, M. L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O’Riordan, E.</au><au>Pickett, M. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parameter-uniform numerical method for a singularly perturbed two parameter elliptic problem</atitle><jtitle>Advances in computational mathematics</jtitle><stitle>Adv Comput Math</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>35</volume><issue>1</issue><spage>57</spage><epage>82</epage><pages>57-82</pages><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>In this paper, a class of singularly perturbed elliptic partial differential equations posed on a rectangular domain is studied. The differential equation contains two singular perturbation parameters. The solutions of these singularly perturbed problems are decomposed into a sum of regular, boundary layer and corner layer components. Parameter-explicit bounds on the derivatives of each of these components are derived. A numerical algorithm based on an upwind finite difference operator and a tensor product of piecewise-uniform Shishkin meshes is analysed. Parameter-uniform asymptotic error bounds for the numerical approximations are established.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10444-010-9164-1</doi><tpages>26</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1019-7168 |
ispartof | Advances in computational mathematics, 2011-07, Vol.35 (1), p.57-82 |
issn | 1019-7168 1572-9044 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671226648 |
source | Springer Nature |
subjects | Approximation Asymptotic properties Computational Mathematics and Numerical Analysis Computational Science and Engineering Corners Derivatives Differential equations Mathematical analysis Mathematical and Computational Biology Mathematical Modeling and Industrial Mathematics Mathematical models Mathematics Mathematics and Statistics Numerical analysis Visualization |
title | A parameter-uniform numerical method for a singularly perturbed two parameter elliptic problem |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parameter-uniform%20numerical%20method%20for%20a%20singularly%20perturbed%20two%20parameter%20elliptic%20problem&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=O%E2%80%99Riordan,%20E.&rft.date=2011-07-01&rft.volume=35&rft.issue=1&rft.spage=57&rft.epage=82&rft.pages=57-82&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-010-9164-1&rft_dat=%3Cproquest_cross%3E1671226648%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-679d4bf93beec1d40d6f55d4c18657b0f242d3a15df3803dfcb69765b4e1418b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671226648&rft_id=info:pmid/&rfr_iscdi=true |