Loading…

A parameter-uniform numerical method for a singularly perturbed two parameter elliptic problem

In this paper, a class of singularly perturbed elliptic partial differential equations posed on a rectangular domain is studied. The differential equation contains two singular perturbation parameters. The solutions of these singularly perturbed problems are decomposed into a sum of regular, boundar...

Full description

Saved in:
Bibliographic Details
Published in:Advances in computational mathematics 2011-07, Vol.35 (1), p.57-82
Main Authors: O’Riordan, E., Pickett, M. L.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c321t-679d4bf93beec1d40d6f55d4c18657b0f242d3a15df3803dfcb69765b4e1418b3
cites cdi_FETCH-LOGICAL-c321t-679d4bf93beec1d40d6f55d4c18657b0f242d3a15df3803dfcb69765b4e1418b3
container_end_page 82
container_issue 1
container_start_page 57
container_title Advances in computational mathematics
container_volume 35
creator O’Riordan, E.
Pickett, M. L.
description In this paper, a class of singularly perturbed elliptic partial differential equations posed on a rectangular domain is studied. The differential equation contains two singular perturbation parameters. The solutions of these singularly perturbed problems are decomposed into a sum of regular, boundary layer and corner layer components. Parameter-explicit bounds on the derivatives of each of these components are derived. A numerical algorithm based on an upwind finite difference operator and a tensor product of piecewise-uniform Shishkin meshes is analysed. Parameter-uniform asymptotic error bounds for the numerical approximations are established.
doi_str_mv 10.1007/s10444-010-9164-1
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671226648</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1671226648</sourcerecordid><originalsourceid>FETCH-LOGICAL-c321t-679d4bf93beec1d40d6f55d4c18657b0f242d3a15df3803dfcb69765b4e1418b3</originalsourceid><addsrcrecordid>eNp9kEtLxDAUhYMoOI7-AHdZuonmpmnSLofBFwhudGvIc-zQl0mLzL83QwV3ru7lcM59fAhdA70FSuVdAso5JxQoqUFwAidoBaVkpM76ae4p1ESCqM7RRUp7SmktZLlCHxs86qg7P_lI5r4JQ-xwP3c-Nla3OOufg8NZxRqnpt_NrY7tAY8-TnM03uHpe_ibgH3bNuPUWDzGwbS-u0RnQbfJX_3WNXp_uH_bPpGX18fn7eaF2ILBRISsHTehLoz3FhynToSydNxCJUppaGCcuUJD6UJR0cIFa0QtRWm4Bw6VKdboZpmb937NPk2qa5LN1-jeD3NSICQwJgSvshUWq41DStEHNcam0_GggKojS7WwVJmlOrJUkDNsyaTs7Xc-qv0wxz5_9E_oBwOSeII</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671226648</pqid></control><display><type>article</type><title>A parameter-uniform numerical method for a singularly perturbed two parameter elliptic problem</title><source>Springer Nature</source><creator>O’Riordan, E. ; Pickett, M. L.</creator><creatorcontrib>O’Riordan, E. ; Pickett, M. L.</creatorcontrib><description>In this paper, a class of singularly perturbed elliptic partial differential equations posed on a rectangular domain is studied. The differential equation contains two singular perturbation parameters. The solutions of these singularly perturbed problems are decomposed into a sum of regular, boundary layer and corner layer components. Parameter-explicit bounds on the derivatives of each of these components are derived. A numerical algorithm based on an upwind finite difference operator and a tensor product of piecewise-uniform Shishkin meshes is analysed. Parameter-uniform asymptotic error bounds for the numerical approximations are established.</description><identifier>ISSN: 1019-7168</identifier><identifier>EISSN: 1572-9044</identifier><identifier>DOI: 10.1007/s10444-010-9164-1</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Approximation ; Asymptotic properties ; Computational Mathematics and Numerical Analysis ; Computational Science and Engineering ; Corners ; Derivatives ; Differential equations ; Mathematical analysis ; Mathematical and Computational Biology ; Mathematical Modeling and Industrial Mathematics ; Mathematical models ; Mathematics ; Mathematics and Statistics ; Numerical analysis ; Visualization</subject><ispartof>Advances in computational mathematics, 2011-07, Vol.35 (1), p.57-82</ispartof><rights>Springer Science+Business Media, LLC. 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c321t-679d4bf93beec1d40d6f55d4c18657b0f242d3a15df3803dfcb69765b4e1418b3</citedby><cites>FETCH-LOGICAL-c321t-679d4bf93beec1d40d6f55d4c18657b0f242d3a15df3803dfcb69765b4e1418b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids></links><search><creatorcontrib>O’Riordan, E.</creatorcontrib><creatorcontrib>Pickett, M. L.</creatorcontrib><title>A parameter-uniform numerical method for a singularly perturbed two parameter elliptic problem</title><title>Advances in computational mathematics</title><addtitle>Adv Comput Math</addtitle><description>In this paper, a class of singularly perturbed elliptic partial differential equations posed on a rectangular domain is studied. The differential equation contains two singular perturbation parameters. The solutions of these singularly perturbed problems are decomposed into a sum of regular, boundary layer and corner layer components. Parameter-explicit bounds on the derivatives of each of these components are derived. A numerical algorithm based on an upwind finite difference operator and a tensor product of piecewise-uniform Shishkin meshes is analysed. Parameter-uniform asymptotic error bounds for the numerical approximations are established.</description><subject>Approximation</subject><subject>Asymptotic properties</subject><subject>Computational Mathematics and Numerical Analysis</subject><subject>Computational Science and Engineering</subject><subject>Corners</subject><subject>Derivatives</subject><subject>Differential equations</subject><subject>Mathematical analysis</subject><subject>Mathematical and Computational Biology</subject><subject>Mathematical Modeling and Industrial Mathematics</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Numerical analysis</subject><subject>Visualization</subject><issn>1019-7168</issn><issn>1572-9044</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2011</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLxDAUhYMoOI7-AHdZuonmpmnSLofBFwhudGvIc-zQl0mLzL83QwV3ru7lcM59fAhdA70FSuVdAso5JxQoqUFwAidoBaVkpM76ae4p1ESCqM7RRUp7SmktZLlCHxs86qg7P_lI5r4JQ-xwP3c-Nla3OOufg8NZxRqnpt_NrY7tAY8-TnM03uHpe_ibgH3bNuPUWDzGwbS-u0RnQbfJX_3WNXp_uH_bPpGX18fn7eaF2ILBRISsHTehLoz3FhynToSydNxCJUppaGCcuUJD6UJR0cIFa0QtRWm4Bw6VKdboZpmb937NPk2qa5LN1-jeD3NSICQwJgSvshUWq41DStEHNcam0_GggKojS7WwVJmlOrJUkDNsyaTs7Xc-qv0wxz5_9E_oBwOSeII</recordid><startdate>20110701</startdate><enddate>20110701</enddate><creator>O’Riordan, E.</creator><creator>Pickett, M. L.</creator><general>Springer US</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>20110701</creationdate><title>A parameter-uniform numerical method for a singularly perturbed two parameter elliptic problem</title><author>O’Riordan, E. ; Pickett, M. L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c321t-679d4bf93beec1d40d6f55d4c18657b0f242d3a15df3803dfcb69765b4e1418b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2011</creationdate><topic>Approximation</topic><topic>Asymptotic properties</topic><topic>Computational Mathematics and Numerical Analysis</topic><topic>Computational Science and Engineering</topic><topic>Corners</topic><topic>Derivatives</topic><topic>Differential equations</topic><topic>Mathematical analysis</topic><topic>Mathematical and Computational Biology</topic><topic>Mathematical Modeling and Industrial Mathematics</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Numerical analysis</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>O’Riordan, E.</creatorcontrib><creatorcontrib>Pickett, M. L.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>Advances in computational mathematics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>O’Riordan, E.</au><au>Pickett, M. L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A parameter-uniform numerical method for a singularly perturbed two parameter elliptic problem</atitle><jtitle>Advances in computational mathematics</jtitle><stitle>Adv Comput Math</stitle><date>2011-07-01</date><risdate>2011</risdate><volume>35</volume><issue>1</issue><spage>57</spage><epage>82</epage><pages>57-82</pages><issn>1019-7168</issn><eissn>1572-9044</eissn><abstract>In this paper, a class of singularly perturbed elliptic partial differential equations posed on a rectangular domain is studied. The differential equation contains two singular perturbation parameters. The solutions of these singularly perturbed problems are decomposed into a sum of regular, boundary layer and corner layer components. Parameter-explicit bounds on the derivatives of each of these components are derived. A numerical algorithm based on an upwind finite difference operator and a tensor product of piecewise-uniform Shishkin meshes is analysed. Parameter-uniform asymptotic error bounds for the numerical approximations are established.</abstract><cop>Boston</cop><pub>Springer US</pub><doi>10.1007/s10444-010-9164-1</doi><tpages>26</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1019-7168
ispartof Advances in computational mathematics, 2011-07, Vol.35 (1), p.57-82
issn 1019-7168
1572-9044
language eng
recordid cdi_proquest_miscellaneous_1671226648
source Springer Nature
subjects Approximation
Asymptotic properties
Computational Mathematics and Numerical Analysis
Computational Science and Engineering
Corners
Derivatives
Differential equations
Mathematical analysis
Mathematical and Computational Biology
Mathematical Modeling and Industrial Mathematics
Mathematical models
Mathematics
Mathematics and Statistics
Numerical analysis
Visualization
title A parameter-uniform numerical method for a singularly perturbed two parameter elliptic problem
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A22%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20parameter-uniform%20numerical%20method%20for%20a%20singularly%20perturbed%20two%20parameter%20elliptic%20problem&rft.jtitle=Advances%20in%20computational%20mathematics&rft.au=O%E2%80%99Riordan,%20E.&rft.date=2011-07-01&rft.volume=35&rft.issue=1&rft.spage=57&rft.epage=82&rft.pages=57-82&rft.issn=1019-7168&rft.eissn=1572-9044&rft_id=info:doi/10.1007/s10444-010-9164-1&rft_dat=%3Cproquest_cross%3E1671226648%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c321t-679d4bf93beec1d40d6f55d4c18657b0f242d3a15df3803dfcb69765b4e1418b3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671226648&rft_id=info:pmid/&rfr_iscdi=true