Loading…

Equilateral-Triangle and Square Resonator Semiconductor Microlasers

The characteristics of equilateral-triangle resonator (ETR) and square resonator microlasers are reported, which are potential light sources in the photonic integrations. Based on the numerical simulations, we find that high-efficiency directional emission can be achieved for the triangle and square...

Full description

Saved in:
Bibliographic Details
Published in:IEEE journal of selected topics in quantum electronics 2009-05, Vol.15 (3), p.879-884
Main Authors: Yang, Yue-De, Huang, Yong-Zhen, Che, Kai-Jun, Wang, Shi-Jiang, Hu, Yong-Hong, Du, Yun
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The characteristics of equilateral-triangle resonator (ETR) and square resonator microlasers are reported, which are potential light sources in the photonic integrations. Based on the numerical simulations, we find that high-efficiency directional emission can be achieved for the triangle and square microlasers by directly connecting an output waveguide to the resonators. The electrically injected InP/InGaAsP ETR and square resonator microlasers with a 2-mum-wide output waveguide were fabricated by standard photolithography and inductively coupled plasma etching techniques. Room-temperature continuous-wave (CW) operations were achieved for the ETR microlasers with the side length from 10 to 30 mum and the square resonator microlasers with the side length of 20 mum. The output power versus CW injection current and the laser spectra are presented for an ETR microlaser up to 310 K and a square resonator microlaser to 305 K. The lasing spectra with mode wavelength intervals as that of whispering-gallery-type modes and Fabry-Parot modes are observed for two square lasers, which can lase at low temperature and room temperature, respectively.
ISSN:1077-260X
1558-4542
DOI:10.1109/JSTQE.2008.2010236