Loading…
Computational Methods for Sparse Solution of Linear Inverse Problems
The goal of the sparse approximation problem is to approximate a target signal using a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the...
Saved in:
Published in: | Proceedings of the IEEE 2010-06, Vol.98 (6), p.948-958 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c438t-5b97c8bec3a0c0429d55f47fbcb9d5a021cc7b93833c1c7ac7c8efd2489343633 |
---|---|
cites | cdi_FETCH-LOGICAL-c438t-5b97c8bec3a0c0429d55f47fbcb9d5a021cc7b93833c1c7ac7c8efd2489343633 |
container_end_page | 958 |
container_issue | 6 |
container_start_page | 948 |
container_title | Proceedings of the IEEE |
container_volume | 98 |
creator | Tropp, Joel A. Wright, Stephen J. |
description | The goal of the sparse approximation problem is to approximate a target signal using a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statistics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a plethora of applications. |
doi_str_mv | 10.1109/JPROC.2010.2044010 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671230384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5456165</ieee_id><sourcerecordid>2716848581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-5b97c8bec3a0c0429d55f47fbcb9d5a021cc7b93833c1c7ac7c8efd2489343633</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFb_gF4CXryk7meyOUqsWqm0WD2HzXYWU5Js3E0E_70bWzx4mhnmeQfmQeiS4BkhOLt9Xr-u8hnFYaaY81CP0IQIIWNKRXKMJhgTGWeUZKfozPsdxpiJhE3QfW6bbuhVX9lW1dEL9B926yNjXbTplPMQbWw9jNvImmhZtaBctGi_YFytnS1raPw5OjGq9nBxqFP0_jB_y5_i5epxkd8tY82Z7GNRZqmWJWimsMacZlshDE9NqcvQKkyJ1mmZMcmYJjpVOtBgtpTLjHGWMDZFN_u7nbOfA_i-aCqvoa5VC3bwBUlSQhlmkgf0-h-6s4MLLwYK05TI4EIGiu4p7az3DkzRuapR7jtAxSi2-BVbjGKLg9gQutqHKgD4CwguEpII9gNEkXOd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027189218</pqid></control><display><type>article</type><title>Computational Methods for Sparse Solution of Linear Inverse Problems</title><source>IEEE Xplore (Online service)</source><creator>Tropp, Joel A. ; Wright, Stephen J.</creator><creatorcontrib>Tropp, Joel A. ; Wright, Stephen J.</creatorcontrib><description>The goal of the sparse approximation problem is to approximate a target signal using a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statistics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a plethora of applications.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2010.2044010</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation ; Approximation algorithms ; Collection ; Compressed sensing ; Computation ; convex optimization ; Dictionaries ; Electrical engineering ; Inverse problems ; Least squares approximation ; matching pursuit ; Matching pursuit algorithms ; Mathematical analysis ; Mathematical models ; Mathematics ; Signal processing ; Signal processing algorithms ; sparse approximation ; Statistics</subject><ispartof>Proceedings of the IEEE, 2010-06, Vol.98 (6), p.948-958</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-5b97c8bec3a0c0429d55f47fbcb9d5a021cc7b93833c1c7ac7c8efd2489343633</citedby><cites>FETCH-LOGICAL-c438t-5b97c8bec3a0c0429d55f47fbcb9d5a021cc7b93833c1c7ac7c8efd2489343633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5456165$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Tropp, Joel A.</creatorcontrib><creatorcontrib>Wright, Stephen J.</creatorcontrib><title>Computational Methods for Sparse Solution of Linear Inverse Problems</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>The goal of the sparse approximation problem is to approximate a target signal using a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statistics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a plethora of applications.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>Collection</subject><subject>Compressed sensing</subject><subject>Computation</subject><subject>convex optimization</subject><subject>Dictionaries</subject><subject>Electrical engineering</subject><subject>Inverse problems</subject><subject>Least squares approximation</subject><subject>matching pursuit</subject><subject>Matching pursuit algorithms</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>sparse approximation</subject><subject>Statistics</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRsFb_gF4CXryk7meyOUqsWqm0WD2HzXYWU5Js3E0E_70bWzx4mhnmeQfmQeiS4BkhOLt9Xr-u8hnFYaaY81CP0IQIIWNKRXKMJhgTGWeUZKfozPsdxpiJhE3QfW6bbuhVX9lW1dEL9B926yNjXbTplPMQbWw9jNvImmhZtaBctGi_YFytnS1raPw5OjGq9nBxqFP0_jB_y5_i5epxkd8tY82Z7GNRZqmWJWimsMacZlshDE9NqcvQKkyJ1mmZMcmYJjpVOtBgtpTLjHGWMDZFN_u7nbOfA_i-aCqvoa5VC3bwBUlSQhlmkgf0-h-6s4MLLwYK05TI4EIGiu4p7az3DkzRuapR7jtAxSi2-BVbjGKLg9gQutqHKgD4CwguEpII9gNEkXOd</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Tropp, Joel A.</creator><creator>Wright, Stephen J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100601</creationdate><title>Computational Methods for Sparse Solution of Linear Inverse Problems</title><author>Tropp, Joel A. ; Wright, Stephen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-5b97c8bec3a0c0429d55f47fbcb9d5a021cc7b93833c1c7ac7c8efd2489343633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>Collection</topic><topic>Compressed sensing</topic><topic>Computation</topic><topic>convex optimization</topic><topic>Dictionaries</topic><topic>Electrical engineering</topic><topic>Inverse problems</topic><topic>Least squares approximation</topic><topic>matching pursuit</topic><topic>Matching pursuit algorithms</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>sparse approximation</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tropp, Joel A.</creatorcontrib><creatorcontrib>Wright, Stephen J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tropp, Joel A.</au><au>Wright, Stephen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Methods for Sparse Solution of Linear Inverse Problems</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>98</volume><issue>6</issue><spage>948</spage><epage>958</epage><pages>948-958</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>The goal of the sparse approximation problem is to approximate a target signal using a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statistics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a plethora of applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2010.2044010</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0018-9219 |
ispartof | Proceedings of the IEEE, 2010-06, Vol.98 (6), p.948-958 |
issn | 0018-9219 1558-2256 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671230384 |
source | IEEE Xplore (Online service) |
subjects | Algorithms Approximation Approximation algorithms Collection Compressed sensing Computation convex optimization Dictionaries Electrical engineering Inverse problems Least squares approximation matching pursuit Matching pursuit algorithms Mathematical analysis Mathematical models Mathematics Signal processing Signal processing algorithms sparse approximation Statistics |
title | Computational Methods for Sparse Solution of Linear Inverse Problems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Methods%20for%20Sparse%20Solution%20of%20Linear%20Inverse%20Problems&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Tropp,%20Joel%20A.&rft.date=2010-06-01&rft.volume=98&rft.issue=6&rft.spage=948&rft.epage=958&rft.pages=948-958&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2010.2044010&rft_dat=%3Cproquest_cross%3E2716848581%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-5b97c8bec3a0c0429d55f47fbcb9d5a021cc7b93833c1c7ac7c8efd2489343633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1027189218&rft_id=info:pmid/&rft_ieee_id=5456165&rfr_iscdi=true |