Loading…

Computational Methods for Sparse Solution of Linear Inverse Problems

The goal of the sparse approximation problem is to approximate a target signal using a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the IEEE 2010-06, Vol.98 (6), p.948-958
Main Authors: Tropp, Joel A., Wright, Stephen J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c438t-5b97c8bec3a0c0429d55f47fbcb9d5a021cc7b93833c1c7ac7c8efd2489343633
cites cdi_FETCH-LOGICAL-c438t-5b97c8bec3a0c0429d55f47fbcb9d5a021cc7b93833c1c7ac7c8efd2489343633
container_end_page 958
container_issue 6
container_start_page 948
container_title Proceedings of the IEEE
container_volume 98
creator Tropp, Joel A.
Wright, Stephen J.
description The goal of the sparse approximation problem is to approximate a target signal using a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statistics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a plethora of applications.
doi_str_mv 10.1109/JPROC.2010.2044010
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671230384</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5456165</ieee_id><sourcerecordid>2716848581</sourcerecordid><originalsourceid>FETCH-LOGICAL-c438t-5b97c8bec3a0c0429d55f47fbcb9d5a021cc7b93833c1c7ac7c8efd2489343633</originalsourceid><addsrcrecordid>eNpdkE1Lw0AQhhdRsFb_gF4CXryk7meyOUqsWqm0WD2HzXYWU5Js3E0E_70bWzx4mhnmeQfmQeiS4BkhOLt9Xr-u8hnFYaaY81CP0IQIIWNKRXKMJhgTGWeUZKfozPsdxpiJhE3QfW6bbuhVX9lW1dEL9B926yNjXbTplPMQbWw9jNvImmhZtaBctGi_YFytnS1raPw5OjGq9nBxqFP0_jB_y5_i5epxkd8tY82Z7GNRZqmWJWimsMacZlshDE9NqcvQKkyJ1mmZMcmYJjpVOtBgtpTLjHGWMDZFN_u7nbOfA_i-aCqvoa5VC3bwBUlSQhlmkgf0-h-6s4MLLwYK05TI4EIGiu4p7az3DkzRuapR7jtAxSi2-BVbjGKLg9gQutqHKgD4CwguEpII9gNEkXOd</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027189218</pqid></control><display><type>article</type><title>Computational Methods for Sparse Solution of Linear Inverse Problems</title><source>IEEE Xplore (Online service)</source><creator>Tropp, Joel A. ; Wright, Stephen J.</creator><creatorcontrib>Tropp, Joel A. ; Wright, Stephen J.</creatorcontrib><description>The goal of the sparse approximation problem is to approximate a target signal using a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statistics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a plethora of applications.</description><identifier>ISSN: 0018-9219</identifier><identifier>EISSN: 1558-2256</identifier><identifier>DOI: 10.1109/JPROC.2010.2044010</identifier><identifier>CODEN: IEEPAD</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Algorithms ; Approximation ; Approximation algorithms ; Collection ; Compressed sensing ; Computation ; convex optimization ; Dictionaries ; Electrical engineering ; Inverse problems ; Least squares approximation ; matching pursuit ; Matching pursuit algorithms ; Mathematical analysis ; Mathematical models ; Mathematics ; Signal processing ; Signal processing algorithms ; sparse approximation ; Statistics</subject><ispartof>Proceedings of the IEEE, 2010-06, Vol.98 (6), p.948-958</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Jun 2010</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c438t-5b97c8bec3a0c0429d55f47fbcb9d5a021cc7b93833c1c7ac7c8efd2489343633</citedby><cites>FETCH-LOGICAL-c438t-5b97c8bec3a0c0429d55f47fbcb9d5a021cc7b93833c1c7ac7c8efd2489343633</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5456165$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids></links><search><creatorcontrib>Tropp, Joel A.</creatorcontrib><creatorcontrib>Wright, Stephen J.</creatorcontrib><title>Computational Methods for Sparse Solution of Linear Inverse Problems</title><title>Proceedings of the IEEE</title><addtitle>JPROC</addtitle><description>The goal of the sparse approximation problem is to approximate a target signal using a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statistics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a plethora of applications.</description><subject>Algorithms</subject><subject>Approximation</subject><subject>Approximation algorithms</subject><subject>Collection</subject><subject>Compressed sensing</subject><subject>Computation</subject><subject>convex optimization</subject><subject>Dictionaries</subject><subject>Electrical engineering</subject><subject>Inverse problems</subject><subject>Least squares approximation</subject><subject>matching pursuit</subject><subject>Matching pursuit algorithms</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Signal processing</subject><subject>Signal processing algorithms</subject><subject>sparse approximation</subject><subject>Statistics</subject><issn>0018-9219</issn><issn>1558-2256</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNpdkE1Lw0AQhhdRsFb_gF4CXryk7meyOUqsWqm0WD2HzXYWU5Js3E0E_70bWzx4mhnmeQfmQeiS4BkhOLt9Xr-u8hnFYaaY81CP0IQIIWNKRXKMJhgTGWeUZKfozPsdxpiJhE3QfW6bbuhVX9lW1dEL9B926yNjXbTplPMQbWw9jNvImmhZtaBctGi_YFytnS1raPw5OjGq9nBxqFP0_jB_y5_i5epxkd8tY82Z7GNRZqmWJWimsMacZlshDE9NqcvQKkyJ1mmZMcmYJjpVOtBgtpTLjHGWMDZFN_u7nbOfA_i-aCqvoa5VC3bwBUlSQhlmkgf0-h-6s4MLLwYK05TI4EIGiu4p7az3DkzRuapR7jtAxSi2-BVbjGKLg9gQutqHKgD4CwguEpII9gNEkXOd</recordid><startdate>20100601</startdate><enddate>20100601</enddate><creator>Tropp, Joel A.</creator><creator>Wright, Stephen J.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>8FD</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100601</creationdate><title>Computational Methods for Sparse Solution of Linear Inverse Problems</title><author>Tropp, Joel A. ; Wright, Stephen J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c438t-5b97c8bec3a0c0429d55f47fbcb9d5a021cc7b93833c1c7ac7c8efd2489343633</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Algorithms</topic><topic>Approximation</topic><topic>Approximation algorithms</topic><topic>Collection</topic><topic>Compressed sensing</topic><topic>Computation</topic><topic>convex optimization</topic><topic>Dictionaries</topic><topic>Electrical engineering</topic><topic>Inverse problems</topic><topic>Least squares approximation</topic><topic>matching pursuit</topic><topic>Matching pursuit algorithms</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Signal processing</topic><topic>Signal processing algorithms</topic><topic>sparse approximation</topic><topic>Statistics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tropp, Joel A.</creatorcontrib><creatorcontrib>Wright, Stephen J.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE Electronic Library Online</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>Proceedings of the IEEE</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tropp, Joel A.</au><au>Wright, Stephen J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational Methods for Sparse Solution of Linear Inverse Problems</atitle><jtitle>Proceedings of the IEEE</jtitle><stitle>JPROC</stitle><date>2010-06-01</date><risdate>2010</risdate><volume>98</volume><issue>6</issue><spage>948</spage><epage>958</epage><pages>948-958</pages><issn>0018-9219</issn><eissn>1558-2256</eissn><coden>IEEPAD</coden><abstract>The goal of the sparse approximation problem is to approximate a target signal using a linear combination of a few elementary signals drawn from a fixed collection. This paper surveys the major practical algorithms for sparse approximation. Specific attention is paid to computational issues, to the circumstances in which individual methods tend to perform well, and to the theoretical guarantees available. Many fundamental questions in electrical engineering, statistics, and applied mathematics can be posed as sparse approximation problems, making these algorithms versatile and relevant to a plethora of applications.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/JPROC.2010.2044010</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0018-9219
ispartof Proceedings of the IEEE, 2010-06, Vol.98 (6), p.948-958
issn 0018-9219
1558-2256
language eng
recordid cdi_proquest_miscellaneous_1671230384
source IEEE Xplore (Online service)
subjects Algorithms
Approximation
Approximation algorithms
Collection
Compressed sensing
Computation
convex optimization
Dictionaries
Electrical engineering
Inverse problems
Least squares approximation
matching pursuit
Matching pursuit algorithms
Mathematical analysis
Mathematical models
Mathematics
Signal processing
Signal processing algorithms
sparse approximation
Statistics
title Computational Methods for Sparse Solution of Linear Inverse Problems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T06%3A14%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20Methods%20for%20Sparse%20Solution%20of%20Linear%20Inverse%20Problems&rft.jtitle=Proceedings%20of%20the%20IEEE&rft.au=Tropp,%20Joel%20A.&rft.date=2010-06-01&rft.volume=98&rft.issue=6&rft.spage=948&rft.epage=958&rft.pages=948-958&rft.issn=0018-9219&rft.eissn=1558-2256&rft.coden=IEEPAD&rft_id=info:doi/10.1109/JPROC.2010.2044010&rft_dat=%3Cproquest_cross%3E2716848581%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c438t-5b97c8bec3a0c0429d55f47fbcb9d5a021cc7b93833c1c7ac7c8efd2489343633%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1027189218&rft_id=info:pmid/&rft_ieee_id=5456165&rfr_iscdi=true