Loading…

Improving ‘Objective’ Digital Images with Neuronal Processing: A Computational Approach

This paper describes an experiment where an image recorded with a digital camera is processed using an electro-physiological model of a neuron. The luminosity level of each pixel of the source image is treated as the stimulus for an individual neuron, and the source image is transformed into a respo...

Full description

Saved in:
Bibliographic Details
Published in:International journal of architectural computing 2004-06, Vol.2 (2), p.143-153
Main Authors: Mahalingam, Ganapathy, Kavasseri, Rajesh G.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c1122-9596389df7ca9b0910509547ed39dc447ae713737c154bf143791748ca3024693
container_end_page 153
container_issue 2
container_start_page 143
container_title International journal of architectural computing
container_volume 2
creator Mahalingam, Ganapathy
Kavasseri, Rajesh G.
description This paper describes an experiment where an image recorded with a digital camera is processed using an electro-physiological model of a neuron. The luminosity level of each pixel of the source image is treated as the stimulus for an individual neuron, and the source image is transformed into a response image based on the processing behavior of the Hodgkin-Huxley neuronal model. It is seen that transformation of the image through neuronal processing yields (i) more evenly balanced levels of luminosity and (ii) a more ‘subjective’ rendering of the environment than what was photographed with the digital camera. The CCD (charge coupled device) – based digital camera reveals its limitation as a linear recording device that does not have a balanced dynamic range. The neuronal processing of the image adds non-linearity and a balanced range to the luminosity levels in the image, rendering it closer to a ‘subjective’ perception of the scene.
doi_str_mv 10.1260/1478077041518692
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671240282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1260_1478077041518692</sage_id><sourcerecordid>1671240282</sourcerecordid><originalsourceid>FETCH-LOGICAL-c1122-9596389df7ca9b0910509547ed39dc447ae713737c154bf143791748ca3024693</originalsourceid><addsrcrecordid>eNp1kL1OwzAUhS0EEqWwM2ZkCfjaTmyzVeWvUkUZYGKwXNdpXSVNsJMitj4GvF6fBJcyITFd6Z7vnKt7EDoHfAkkx1fAuMCcYwYZiFySA9QjmImUSiEOUW8np1GHY3QSwhJjmgGIHnodVY2v1241T7abz8l0aU3r1na7-Upu3Ny1ukxGlZ7bkLy7dpE82s7Xq7h88rWxIUTfdTJIhnXVdK1u3Y82aGKkNotTdFToMtiz39lHL3e3z8OHdDy5Hw0H49QAEJLKTOZUyFnBjZZTLAFnWGaM2xmVM8MY15YD5ZQbyNi0AEa5BM6E0RQTlkvaRxf73Hj2rbOhVZULxpalXtm6CwpyDoRhIkhE8R41vg7B20I13lXafyjAatej-ttjtKR7S4g1qGXd-fhj-J__BsPVcoE</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671240282</pqid></control><display><type>article</type><title>Improving ‘Objective’ Digital Images with Neuronal Processing: A Computational Approach</title><source>Sage Journals Online</source><creator>Mahalingam, Ganapathy ; Kavasseri, Rajesh G.</creator><creatorcontrib>Mahalingam, Ganapathy ; Kavasseri, Rajesh G.</creatorcontrib><description>This paper describes an experiment where an image recorded with a digital camera is processed using an electro-physiological model of a neuron. The luminosity level of each pixel of the source image is treated as the stimulus for an individual neuron, and the source image is transformed into a response image based on the processing behavior of the Hodgkin-Huxley neuronal model. It is seen that transformation of the image through neuronal processing yields (i) more evenly balanced levels of luminosity and (ii) a more ‘subjective’ rendering of the environment than what was photographed with the digital camera. The CCD (charge coupled device) – based digital camera reveals its limitation as a linear recording device that does not have a balanced dynamic range. The neuronal processing of the image adds non-linearity and a balanced range to the luminosity levels in the image, rendering it closer to a ‘subjective’ perception of the scene.</description><identifier>ISSN: 1478-0771</identifier><identifier>EISSN: 2048-3988</identifier><identifier>DOI: 10.1260/1478077041518692</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Balancing ; Charge coupled devices ; Computation ; Digital cameras ; Luminosity ; Mathematical models ; Rendering</subject><ispartof>International journal of architectural computing, 2004-06, Vol.2 (2), p.143-153</ispartof><rights>2004 SAGE Publications</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c1122-9596389df7ca9b0910509547ed39dc447ae713737c154bf143791748ca3024693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925,79364</link.rule.ids></links><search><creatorcontrib>Mahalingam, Ganapathy</creatorcontrib><creatorcontrib>Kavasseri, Rajesh G.</creatorcontrib><title>Improving ‘Objective’ Digital Images with Neuronal Processing: A Computational Approach</title><title>International journal of architectural computing</title><description>This paper describes an experiment where an image recorded with a digital camera is processed using an electro-physiological model of a neuron. The luminosity level of each pixel of the source image is treated as the stimulus for an individual neuron, and the source image is transformed into a response image based on the processing behavior of the Hodgkin-Huxley neuronal model. It is seen that transformation of the image through neuronal processing yields (i) more evenly balanced levels of luminosity and (ii) a more ‘subjective’ rendering of the environment than what was photographed with the digital camera. The CCD (charge coupled device) – based digital camera reveals its limitation as a linear recording device that does not have a balanced dynamic range. The neuronal processing of the image adds non-linearity and a balanced range to the luminosity levels in the image, rendering it closer to a ‘subjective’ perception of the scene.</description><subject>Balancing</subject><subject>Charge coupled devices</subject><subject>Computation</subject><subject>Digital cameras</subject><subject>Luminosity</subject><subject>Mathematical models</subject><subject>Rendering</subject><issn>1478-0771</issn><issn>2048-3988</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2004</creationdate><recordtype>article</recordtype><recordid>eNp1kL1OwzAUhS0EEqWwM2ZkCfjaTmyzVeWvUkUZYGKwXNdpXSVNsJMitj4GvF6fBJcyITFd6Z7vnKt7EDoHfAkkx1fAuMCcYwYZiFySA9QjmImUSiEOUW8np1GHY3QSwhJjmgGIHnodVY2v1241T7abz8l0aU3r1na7-Upu3Ny1ukxGlZ7bkLy7dpE82s7Xq7h88rWxIUTfdTJIhnXVdK1u3Y82aGKkNotTdFToMtiz39lHL3e3z8OHdDy5Hw0H49QAEJLKTOZUyFnBjZZTLAFnWGaM2xmVM8MY15YD5ZQbyNi0AEa5BM6E0RQTlkvaRxf73Hj2rbOhVZULxpalXtm6CwpyDoRhIkhE8R41vg7B20I13lXafyjAatej-ttjtKR7S4g1qGXd-fhj-J__BsPVcoE</recordid><startdate>200406</startdate><enddate>200406</enddate><creator>Mahalingam, Ganapathy</creator><creator>Kavasseri, Rajesh G.</creator><general>SAGE Publications</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>FR3</scope><scope>JQ2</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope></search><sort><creationdate>200406</creationdate><title>Improving ‘Objective’ Digital Images with Neuronal Processing: A Computational Approach</title><author>Mahalingam, Ganapathy ; Kavasseri, Rajesh G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c1122-9596389df7ca9b0910509547ed39dc447ae713737c154bf143791748ca3024693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2004</creationdate><topic>Balancing</topic><topic>Charge coupled devices</topic><topic>Computation</topic><topic>Digital cameras</topic><topic>Luminosity</topic><topic>Mathematical models</topic><topic>Rendering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mahalingam, Ganapathy</creatorcontrib><creatorcontrib>Kavasseri, Rajesh G.</creatorcontrib><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><jtitle>International journal of architectural computing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mahalingam, Ganapathy</au><au>Kavasseri, Rajesh G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improving ‘Objective’ Digital Images with Neuronal Processing: A Computational Approach</atitle><jtitle>International journal of architectural computing</jtitle><date>2004-06</date><risdate>2004</risdate><volume>2</volume><issue>2</issue><spage>143</spage><epage>153</epage><pages>143-153</pages><issn>1478-0771</issn><eissn>2048-3988</eissn><abstract>This paper describes an experiment where an image recorded with a digital camera is processed using an electro-physiological model of a neuron. The luminosity level of each pixel of the source image is treated as the stimulus for an individual neuron, and the source image is transformed into a response image based on the processing behavior of the Hodgkin-Huxley neuronal model. It is seen that transformation of the image through neuronal processing yields (i) more evenly balanced levels of luminosity and (ii) a more ‘subjective’ rendering of the environment than what was photographed with the digital camera. The CCD (charge coupled device) – based digital camera reveals its limitation as a linear recording device that does not have a balanced dynamic range. The neuronal processing of the image adds non-linearity and a balanced range to the luminosity levels in the image, rendering it closer to a ‘subjective’ perception of the scene.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><doi>10.1260/1478077041518692</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1478-0771
ispartof International journal of architectural computing, 2004-06, Vol.2 (2), p.143-153
issn 1478-0771
2048-3988
language eng
recordid cdi_proquest_miscellaneous_1671240282
source Sage Journals Online
subjects Balancing
Charge coupled devices
Computation
Digital cameras
Luminosity
Mathematical models
Rendering
title Improving ‘Objective’ Digital Images with Neuronal Processing: A Computational Approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A43%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improving%20%E2%80%98Objective%E2%80%99%20Digital%20Images%20with%20Neuronal%20Processing:%20A%20Computational%20Approach&rft.jtitle=International%20journal%20of%20architectural%20computing&rft.au=Mahalingam,%20Ganapathy&rft.date=2004-06&rft.volume=2&rft.issue=2&rft.spage=143&rft.epage=153&rft.pages=143-153&rft.issn=1478-0771&rft.eissn=2048-3988&rft_id=info:doi/10.1260/1478077041518692&rft_dat=%3Cproquest_cross%3E1671240282%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c1122-9596389df7ca9b0910509547ed39dc447ae713737c154bf143791748ca3024693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671240282&rft_id=info:pmid/&rft_sage_id=10.1260_1478077041518692&rfr_iscdi=true