Loading…

Robust Beamforming via Worst-Case SINR Maximization

Minimum variance beamforming, which uses a weight vector that maximizes the signal-to-interference-plus-noise ratio (SINR), is often sensitive to estimation error and uncertainty in the parameters, steering vector and covariance matrix. Robust beamforming attempts to systematically alleviate this se...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on signal processing 2008-04, Vol.56 (4), p.1539-1547
Main Authors: Seung-Jean Kim, Magnani, A., Mutapcic, A., Boyd, S.P., Zhi-Quan Luo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c382t-12426ebd1d6c24de54a199129c2be73c9781522da2b7384b395908d3d657c9df3
cites cdi_FETCH-LOGICAL-c382t-12426ebd1d6c24de54a199129c2be73c9781522da2b7384b395908d3d657c9df3
container_end_page 1547
container_issue 4
container_start_page 1539
container_title IEEE transactions on signal processing
container_volume 56
creator Seung-Jean Kim
Magnani, A.
Mutapcic, A.
Boyd, S.P.
Zhi-Quan Luo
description Minimum variance beamforming, which uses a weight vector that maximizes the signal-to-interference-plus-noise ratio (SINR), is often sensitive to estimation error and uncertainty in the parameters, steering vector and covariance matrix. Robust beamforming attempts to systematically alleviate this sensitivity by explicitly incorporating a data uncertainty model in the optimization problem. In this paper, we consider robust beamforming via worst-case SINR maximization, that is, the problem of finding a weight vector that maximizes the worst-case SINR over the uncertainty model. We show that with a general convex uncertainty model, the worst-case SINR maximization problem can be solved by using convex optimization. In particular, when the uncertainty model can be represented by linear matrix inequalities, the worst-case SINR maximization problem can be solved via semidefinite programming. The convex formulation result allows us to handle more general uncertainty models than prior work using a special form of uncertainty model. We illustrate the method with a numerical example.
doi_str_mv 10.1109/TSP.2007.911498
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671245026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4471885</ieee_id><sourcerecordid>1671245026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-12426ebd1d6c24de54a199129c2be73c9781522da2b7384b395908d3d657c9df3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhQdRUKtrF24GQXEzNTfvLLX4KPjCVnQXMpmMRDozNZmK-utNqbhw4epeuN853HOybA_QEACpk-nkfogREkMFQJVcy7ZAUSgQFXw97YiRgknxvJltx_iKEFCq-FZGHrpyEfv8zJmm7kLj25f83Zv8qQuxL0Ymunwyvn3Ib8yHb_yX6X3X7mQbtZlFt_szB9njxfl0dFVc312OR6fXhSUS9wVgirkrK6i4xbRyjBpQCrCyuHSCWCUkMIwrg0tBJC2JYgrJilScCauqmgyyo5XvPHRvCxd73fho3WxmWtctoiY0RSXAE3j8LwhcpGcYwkv04A_62i1Cm2JoyQnmlFOSoJMVZEMXY3C1ngffmPCpAell2TqVrZdl61XZSXH4Y2uiNbM6mNb6-CvDCKQExRK3v-K8c-73TKlId0a-AROkhJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863264643</pqid></control><display><type>article</type><title>Robust Beamforming via Worst-Case SINR Maximization</title><source>IEEE Xplore (Online service)</source><creator>Seung-Jean Kim ; Magnani, A. ; Mutapcic, A. ; Boyd, S.P. ; Zhi-Quan Luo</creator><creatorcontrib>Seung-Jean Kim ; Magnani, A. ; Mutapcic, A. ; Boyd, S.P. ; Zhi-Quan Luo</creatorcontrib><description>Minimum variance beamforming, which uses a weight vector that maximizes the signal-to-interference-plus-noise ratio (SINR), is often sensitive to estimation error and uncertainty in the parameters, steering vector and covariance matrix. Robust beamforming attempts to systematically alleviate this sensitivity by explicitly incorporating a data uncertainty model in the optimization problem. In this paper, we consider robust beamforming via worst-case SINR maximization, that is, the problem of finding a weight vector that maximizes the worst-case SINR over the uncertainty model. We show that with a general convex uncertainty model, the worst-case SINR maximization problem can be solved by using convex optimization. In particular, when the uncertainty model can be represented by linear matrix inequalities, the worst-case SINR maximization problem can be solved via semidefinite programming. The convex formulation result allows us to handle more general uncertainty models than prior work using a special form of uncertainty model. We illustrate the method with a numerical example.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2007.911498</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Additive noise ; Algorithms ; Applied sciences ; Array signal processing ; Beamforming ; Cities and towns ; Contracts ; convex optimization ; Covariance matrix ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Information, signal and communications theory ; Interference ; Mathematical analysis ; Mathematical models ; Maximization ; Optimization ; Programming ; robust beamforming ; Robustness ; Sensor arrays ; Signal and communications theory ; Signal to noise ratio ; Signal, noise ; signal-to-interference-plus-noise ratio (SINR) ; Studies ; Telecommunications and information theory ; Uncertainty ; Vectors (mathematics)</subject><ispartof>IEEE transactions on signal processing, 2008-04, Vol.56 (4), p.1539-1547</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-12426ebd1d6c24de54a199129c2be73c9781522da2b7384b395908d3d657c9df3</citedby><cites>FETCH-LOGICAL-c382t-12426ebd1d6c24de54a199129c2be73c9781522da2b7384b395908d3d657c9df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4471885$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,54779</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20188195$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Seung-Jean Kim</creatorcontrib><creatorcontrib>Magnani, A.</creatorcontrib><creatorcontrib>Mutapcic, A.</creatorcontrib><creatorcontrib>Boyd, S.P.</creatorcontrib><creatorcontrib>Zhi-Quan Luo</creatorcontrib><title>Robust Beamforming via Worst-Case SINR Maximization</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Minimum variance beamforming, which uses a weight vector that maximizes the signal-to-interference-plus-noise ratio (SINR), is often sensitive to estimation error and uncertainty in the parameters, steering vector and covariance matrix. Robust beamforming attempts to systematically alleviate this sensitivity by explicitly incorporating a data uncertainty model in the optimization problem. In this paper, we consider robust beamforming via worst-case SINR maximization, that is, the problem of finding a weight vector that maximizes the worst-case SINR over the uncertainty model. We show that with a general convex uncertainty model, the worst-case SINR maximization problem can be solved by using convex optimization. In particular, when the uncertainty model can be represented by linear matrix inequalities, the worst-case SINR maximization problem can be solved via semidefinite programming. The convex formulation result allows us to handle more general uncertainty models than prior work using a special form of uncertainty model. We illustrate the method with a numerical example.</description><subject>Additive noise</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Beamforming</subject><subject>Cities and towns</subject><subject>Contracts</subject><subject>convex optimization</subject><subject>Covariance matrix</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Interference</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maximization</subject><subject>Optimization</subject><subject>Programming</subject><subject>robust beamforming</subject><subject>Robustness</subject><subject>Sensor arrays</subject><subject>Signal and communications theory</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>signal-to-interference-plus-noise ratio (SINR)</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Uncertainty</subject><subject>Vectors (mathematics)</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhQdRUKtrF24GQXEzNTfvLLX4KPjCVnQXMpmMRDozNZmK-utNqbhw4epeuN853HOybA_QEACpk-nkfogREkMFQJVcy7ZAUSgQFXw97YiRgknxvJltx_iKEFCq-FZGHrpyEfv8zJmm7kLj25f83Zv8qQuxL0Ymunwyvn3Ib8yHb_yX6X3X7mQbtZlFt_szB9njxfl0dFVc312OR6fXhSUS9wVgirkrK6i4xbRyjBpQCrCyuHSCWCUkMIwrg0tBJC2JYgrJilScCauqmgyyo5XvPHRvCxd73fho3WxmWtctoiY0RSXAE3j8LwhcpGcYwkv04A_62i1Cm2JoyQnmlFOSoJMVZEMXY3C1ngffmPCpAell2TqVrZdl61XZSXH4Y2uiNbM6mNb6-CvDCKQExRK3v-K8c-73TKlId0a-AROkhJc</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Seung-Jean Kim</creator><creator>Magnani, A.</creator><creator>Mutapcic, A.</creator><creator>Boyd, S.P.</creator><creator>Zhi-Quan Luo</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080401</creationdate><title>Robust Beamforming via Worst-Case SINR Maximization</title><author>Seung-Jean Kim ; Magnani, A. ; Mutapcic, A. ; Boyd, S.P. ; Zhi-Quan Luo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-12426ebd1d6c24de54a199129c2be73c9781522da2b7384b395908d3d657c9df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Additive noise</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Beamforming</topic><topic>Cities and towns</topic><topic>Contracts</topic><topic>convex optimization</topic><topic>Covariance matrix</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Interference</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maximization</topic><topic>Optimization</topic><topic>Programming</topic><topic>robust beamforming</topic><topic>Robustness</topic><topic>Sensor arrays</topic><topic>Signal and communications theory</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>signal-to-interference-plus-noise ratio (SINR)</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Uncertainty</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seung-Jean Kim</creatorcontrib><creatorcontrib>Magnani, A.</creatorcontrib><creatorcontrib>Mutapcic, A.</creatorcontrib><creatorcontrib>Boyd, S.P.</creatorcontrib><creatorcontrib>Zhi-Quan Luo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seung-Jean Kim</au><au>Magnani, A.</au><au>Mutapcic, A.</au><au>Boyd, S.P.</au><au>Zhi-Quan Luo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Beamforming via Worst-Case SINR Maximization</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>56</volume><issue>4</issue><spage>1539</spage><epage>1547</epage><pages>1539-1547</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Minimum variance beamforming, which uses a weight vector that maximizes the signal-to-interference-plus-noise ratio (SINR), is often sensitive to estimation error and uncertainty in the parameters, steering vector and covariance matrix. Robust beamforming attempts to systematically alleviate this sensitivity by explicitly incorporating a data uncertainty model in the optimization problem. In this paper, we consider robust beamforming via worst-case SINR maximization, that is, the problem of finding a weight vector that maximizes the worst-case SINR over the uncertainty model. We show that with a general convex uncertainty model, the worst-case SINR maximization problem can be solved by using convex optimization. In particular, when the uncertainty model can be represented by linear matrix inequalities, the worst-case SINR maximization problem can be solved via semidefinite programming. The convex formulation result allows us to handle more general uncertainty models than prior work using a special form of uncertainty model. We illustrate the method with a numerical example.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2007.911498</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1053-587X
ispartof IEEE transactions on signal processing, 2008-04, Vol.56 (4), p.1539-1547
issn 1053-587X
1941-0476
language eng
recordid cdi_proquest_miscellaneous_1671245026
source IEEE Xplore (Online service)
subjects Additive noise
Algorithms
Applied sciences
Array signal processing
Beamforming
Cities and towns
Contracts
convex optimization
Covariance matrix
Detection, estimation, filtering, equalization, prediction
Exact sciences and technology
Information, signal and communications theory
Interference
Mathematical analysis
Mathematical models
Maximization
Optimization
Programming
robust beamforming
Robustness
Sensor arrays
Signal and communications theory
Signal to noise ratio
Signal, noise
signal-to-interference-plus-noise ratio (SINR)
Studies
Telecommunications and information theory
Uncertainty
Vectors (mathematics)
title Robust Beamforming via Worst-Case SINR Maximization
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Beamforming%20via%20Worst-Case%20SINR%20Maximization&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Seung-Jean%20Kim&rft.date=2008-04-01&rft.volume=56&rft.issue=4&rft.spage=1539&rft.epage=1547&rft.pages=1539-1547&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2007.911498&rft_dat=%3Cproquest_cross%3E1671245026%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-12426ebd1d6c24de54a199129c2be73c9781522da2b7384b395908d3d657c9df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=863264643&rft_id=info:pmid/&rft_ieee_id=4471885&rfr_iscdi=true