Loading…
Robust Beamforming via Worst-Case SINR Maximization
Minimum variance beamforming, which uses a weight vector that maximizes the signal-to-interference-plus-noise ratio (SINR), is often sensitive to estimation error and uncertainty in the parameters, steering vector and covariance matrix. Robust beamforming attempts to systematically alleviate this se...
Saved in:
Published in: | IEEE transactions on signal processing 2008-04, Vol.56 (4), p.1539-1547 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c382t-12426ebd1d6c24de54a199129c2be73c9781522da2b7384b395908d3d657c9df3 |
---|---|
cites | cdi_FETCH-LOGICAL-c382t-12426ebd1d6c24de54a199129c2be73c9781522da2b7384b395908d3d657c9df3 |
container_end_page | 1547 |
container_issue | 4 |
container_start_page | 1539 |
container_title | IEEE transactions on signal processing |
container_volume | 56 |
creator | Seung-Jean Kim Magnani, A. Mutapcic, A. Boyd, S.P. Zhi-Quan Luo |
description | Minimum variance beamforming, which uses a weight vector that maximizes the signal-to-interference-plus-noise ratio (SINR), is often sensitive to estimation error and uncertainty in the parameters, steering vector and covariance matrix. Robust beamforming attempts to systematically alleviate this sensitivity by explicitly incorporating a data uncertainty model in the optimization problem. In this paper, we consider robust beamforming via worst-case SINR maximization, that is, the problem of finding a weight vector that maximizes the worst-case SINR over the uncertainty model. We show that with a general convex uncertainty model, the worst-case SINR maximization problem can be solved by using convex optimization. In particular, when the uncertainty model can be represented by linear matrix inequalities, the worst-case SINR maximization problem can be solved via semidefinite programming. The convex formulation result allows us to handle more general uncertainty models than prior work using a special form of uncertainty model. We illustrate the method with a numerical example. |
doi_str_mv | 10.1109/TSP.2007.911498 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671245026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>4471885</ieee_id><sourcerecordid>1671245026</sourcerecordid><originalsourceid>FETCH-LOGICAL-c382t-12426ebd1d6c24de54a199129c2be73c9781522da2b7384b395908d3d657c9df3</originalsourceid><addsrcrecordid>eNp9kEtLAzEUhQdRUKtrF24GQXEzNTfvLLX4KPjCVnQXMpmMRDozNZmK-utNqbhw4epeuN853HOybA_QEACpk-nkfogREkMFQJVcy7ZAUSgQFXw97YiRgknxvJltx_iKEFCq-FZGHrpyEfv8zJmm7kLj25f83Zv8qQuxL0Ymunwyvn3Ib8yHb_yX6X3X7mQbtZlFt_szB9njxfl0dFVc312OR6fXhSUS9wVgirkrK6i4xbRyjBpQCrCyuHSCWCUkMIwrg0tBJC2JYgrJilScCauqmgyyo5XvPHRvCxd73fho3WxmWtctoiY0RSXAE3j8LwhcpGcYwkv04A_62i1Cm2JoyQnmlFOSoJMVZEMXY3C1ngffmPCpAell2TqVrZdl61XZSXH4Y2uiNbM6mNb6-CvDCKQExRK3v-K8c-73TKlId0a-AROkhJc</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>863264643</pqid></control><display><type>article</type><title>Robust Beamforming via Worst-Case SINR Maximization</title><source>IEEE Xplore (Online service)</source><creator>Seung-Jean Kim ; Magnani, A. ; Mutapcic, A. ; Boyd, S.P. ; Zhi-Quan Luo</creator><creatorcontrib>Seung-Jean Kim ; Magnani, A. ; Mutapcic, A. ; Boyd, S.P. ; Zhi-Quan Luo</creatorcontrib><description>Minimum variance beamforming, which uses a weight vector that maximizes the signal-to-interference-plus-noise ratio (SINR), is often sensitive to estimation error and uncertainty in the parameters, steering vector and covariance matrix. Robust beamforming attempts to systematically alleviate this sensitivity by explicitly incorporating a data uncertainty model in the optimization problem. In this paper, we consider robust beamforming via worst-case SINR maximization, that is, the problem of finding a weight vector that maximizes the worst-case SINR over the uncertainty model. We show that with a general convex uncertainty model, the worst-case SINR maximization problem can be solved by using convex optimization. In particular, when the uncertainty model can be represented by linear matrix inequalities, the worst-case SINR maximization problem can be solved via semidefinite programming. The convex formulation result allows us to handle more general uncertainty models than prior work using a special form of uncertainty model. We illustrate the method with a numerical example.</description><identifier>ISSN: 1053-587X</identifier><identifier>EISSN: 1941-0476</identifier><identifier>DOI: 10.1109/TSP.2007.911498</identifier><identifier>CODEN: ITPRED</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Additive noise ; Algorithms ; Applied sciences ; Array signal processing ; Beamforming ; Cities and towns ; Contracts ; convex optimization ; Covariance matrix ; Detection, estimation, filtering, equalization, prediction ; Exact sciences and technology ; Information, signal and communications theory ; Interference ; Mathematical analysis ; Mathematical models ; Maximization ; Optimization ; Programming ; robust beamforming ; Robustness ; Sensor arrays ; Signal and communications theory ; Signal to noise ratio ; Signal, noise ; signal-to-interference-plus-noise ratio (SINR) ; Studies ; Telecommunications and information theory ; Uncertainty ; Vectors (mathematics)</subject><ispartof>IEEE transactions on signal processing, 2008-04, Vol.56 (4), p.1539-1547</ispartof><rights>2008 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c382t-12426ebd1d6c24de54a199129c2be73c9781522da2b7384b395908d3d657c9df3</citedby><cites>FETCH-LOGICAL-c382t-12426ebd1d6c24de54a199129c2be73c9781522da2b7384b395908d3d657c9df3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/4471885$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,778,782,27907,27908,54779</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20188195$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Seung-Jean Kim</creatorcontrib><creatorcontrib>Magnani, A.</creatorcontrib><creatorcontrib>Mutapcic, A.</creatorcontrib><creatorcontrib>Boyd, S.P.</creatorcontrib><creatorcontrib>Zhi-Quan Luo</creatorcontrib><title>Robust Beamforming via Worst-Case SINR Maximization</title><title>IEEE transactions on signal processing</title><addtitle>TSP</addtitle><description>Minimum variance beamforming, which uses a weight vector that maximizes the signal-to-interference-plus-noise ratio (SINR), is often sensitive to estimation error and uncertainty in the parameters, steering vector and covariance matrix. Robust beamforming attempts to systematically alleviate this sensitivity by explicitly incorporating a data uncertainty model in the optimization problem. In this paper, we consider robust beamforming via worst-case SINR maximization, that is, the problem of finding a weight vector that maximizes the worst-case SINR over the uncertainty model. We show that with a general convex uncertainty model, the worst-case SINR maximization problem can be solved by using convex optimization. In particular, when the uncertainty model can be represented by linear matrix inequalities, the worst-case SINR maximization problem can be solved via semidefinite programming. The convex formulation result allows us to handle more general uncertainty models than prior work using a special form of uncertainty model. We illustrate the method with a numerical example.</description><subject>Additive noise</subject><subject>Algorithms</subject><subject>Applied sciences</subject><subject>Array signal processing</subject><subject>Beamforming</subject><subject>Cities and towns</subject><subject>Contracts</subject><subject>convex optimization</subject><subject>Covariance matrix</subject><subject>Detection, estimation, filtering, equalization, prediction</subject><subject>Exact sciences and technology</subject><subject>Information, signal and communications theory</subject><subject>Interference</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Maximization</subject><subject>Optimization</subject><subject>Programming</subject><subject>robust beamforming</subject><subject>Robustness</subject><subject>Sensor arrays</subject><subject>Signal and communications theory</subject><subject>Signal to noise ratio</subject><subject>Signal, noise</subject><subject>signal-to-interference-plus-noise ratio (SINR)</subject><subject>Studies</subject><subject>Telecommunications and information theory</subject><subject>Uncertainty</subject><subject>Vectors (mathematics)</subject><issn>1053-587X</issn><issn>1941-0476</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kEtLAzEUhQdRUKtrF24GQXEzNTfvLLX4KPjCVnQXMpmMRDozNZmK-utNqbhw4epeuN853HOybA_QEACpk-nkfogREkMFQJVcy7ZAUSgQFXw97YiRgknxvJltx_iKEFCq-FZGHrpyEfv8zJmm7kLj25f83Zv8qQuxL0Ymunwyvn3Ib8yHb_yX6X3X7mQbtZlFt_szB9njxfl0dFVc312OR6fXhSUS9wVgirkrK6i4xbRyjBpQCrCyuHSCWCUkMIwrg0tBJC2JYgrJilScCauqmgyyo5XvPHRvCxd73fho3WxmWtctoiY0RSXAE3j8LwhcpGcYwkv04A_62i1Cm2JoyQnmlFOSoJMVZEMXY3C1ngffmPCpAell2TqVrZdl61XZSXH4Y2uiNbM6mNb6-CvDCKQExRK3v-K8c-73TKlId0a-AROkhJc</recordid><startdate>20080401</startdate><enddate>20080401</enddate><creator>Seung-Jean Kim</creator><creator>Magnani, A.</creator><creator>Mutapcic, A.</creator><creator>Boyd, S.P.</creator><creator>Zhi-Quan Luo</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>7SP</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20080401</creationdate><title>Robust Beamforming via Worst-Case SINR Maximization</title><author>Seung-Jean Kim ; Magnani, A. ; Mutapcic, A. ; Boyd, S.P. ; Zhi-Quan Luo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c382t-12426ebd1d6c24de54a199129c2be73c9781522da2b7384b395908d3d657c9df3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Additive noise</topic><topic>Algorithms</topic><topic>Applied sciences</topic><topic>Array signal processing</topic><topic>Beamforming</topic><topic>Cities and towns</topic><topic>Contracts</topic><topic>convex optimization</topic><topic>Covariance matrix</topic><topic>Detection, estimation, filtering, equalization, prediction</topic><topic>Exact sciences and technology</topic><topic>Information, signal and communications theory</topic><topic>Interference</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Maximization</topic><topic>Optimization</topic><topic>Programming</topic><topic>robust beamforming</topic><topic>Robustness</topic><topic>Sensor arrays</topic><topic>Signal and communications theory</topic><topic>Signal to noise ratio</topic><topic>Signal, noise</topic><topic>signal-to-interference-plus-noise ratio (SINR)</topic><topic>Studies</topic><topic>Telecommunications and information theory</topic><topic>Uncertainty</topic><topic>Vectors (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Seung-Jean Kim</creatorcontrib><creatorcontrib>Magnani, A.</creatorcontrib><creatorcontrib>Mutapcic, A.</creatorcontrib><creatorcontrib>Boyd, S.P.</creatorcontrib><creatorcontrib>Zhi-Quan Luo</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) 1998–Present</collection><collection>IEEE Xplore (Online service)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on signal processing</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Seung-Jean Kim</au><au>Magnani, A.</au><au>Mutapcic, A.</au><au>Boyd, S.P.</au><au>Zhi-Quan Luo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Robust Beamforming via Worst-Case SINR Maximization</atitle><jtitle>IEEE transactions on signal processing</jtitle><stitle>TSP</stitle><date>2008-04-01</date><risdate>2008</risdate><volume>56</volume><issue>4</issue><spage>1539</spage><epage>1547</epage><pages>1539-1547</pages><issn>1053-587X</issn><eissn>1941-0476</eissn><coden>ITPRED</coden><abstract>Minimum variance beamforming, which uses a weight vector that maximizes the signal-to-interference-plus-noise ratio (SINR), is often sensitive to estimation error and uncertainty in the parameters, steering vector and covariance matrix. Robust beamforming attempts to systematically alleviate this sensitivity by explicitly incorporating a data uncertainty model in the optimization problem. In this paper, we consider robust beamforming via worst-case SINR maximization, that is, the problem of finding a weight vector that maximizes the worst-case SINR over the uncertainty model. We show that with a general convex uncertainty model, the worst-case SINR maximization problem can be solved by using convex optimization. In particular, when the uncertainty model can be represented by linear matrix inequalities, the worst-case SINR maximization problem can be solved via semidefinite programming. The convex formulation result allows us to handle more general uncertainty models than prior work using a special form of uncertainty model. We illustrate the method with a numerical example.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TSP.2007.911498</doi><tpages>9</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1053-587X |
ispartof | IEEE transactions on signal processing, 2008-04, Vol.56 (4), p.1539-1547 |
issn | 1053-587X 1941-0476 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671245026 |
source | IEEE Xplore (Online service) |
subjects | Additive noise Algorithms Applied sciences Array signal processing Beamforming Cities and towns Contracts convex optimization Covariance matrix Detection, estimation, filtering, equalization, prediction Exact sciences and technology Information, signal and communications theory Interference Mathematical analysis Mathematical models Maximization Optimization Programming robust beamforming Robustness Sensor arrays Signal and communications theory Signal to noise ratio Signal, noise signal-to-interference-plus-noise ratio (SINR) Studies Telecommunications and information theory Uncertainty Vectors (mathematics) |
title | Robust Beamforming via Worst-Case SINR Maximization |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T15%3A27%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Robust%20Beamforming%20via%20Worst-Case%20SINR%20Maximization&rft.jtitle=IEEE%20transactions%20on%20signal%20processing&rft.au=Seung-Jean%20Kim&rft.date=2008-04-01&rft.volume=56&rft.issue=4&rft.spage=1539&rft.epage=1547&rft.pages=1539-1547&rft.issn=1053-587X&rft.eissn=1941-0476&rft.coden=ITPRED&rft_id=info:doi/10.1109/TSP.2007.911498&rft_dat=%3Cproquest_cross%3E1671245026%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c382t-12426ebd1d6c24de54a199129c2be73c9781522da2b7384b395908d3d657c9df3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=863264643&rft_id=info:pmid/&rft_ieee_id=4471885&rfr_iscdi=true |