Loading…

Design of Fast and Efficient Energy-Aware Gradient-Based Scheduling Algorithms Heterogeneous Embedded Multiprocessor Systems

In this paper, we present two heuristic energy-aware scheduling algorithms (EGMS and EGMSIV) for scheduling task precedence graphs in an embedded multiprocessor system having processing elements with dynamic voltage scaling capabilities. Unlike most energy-aware scheduling algorithms that consider t...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on parallel and distributed systems 2009-01, Vol.20 (1), p.1-12
Main Authors: Lee Kee Goh, Veeravalli, B., Viswanathan, S.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we present two heuristic energy-aware scheduling algorithms (EGMS and EGMSIV) for scheduling task precedence graphs in an embedded multiprocessor system having processing elements with dynamic voltage scaling capabilities. Unlike most energy-aware scheduling algorithms that consider task ordering and voltage scaling separately from task mapping, our algorithms consider them in an integrated way. EGMS uses the concept of energy gradient to select tasks to be mapped onto new processors and voltage levels. EGM-SIV extends EGMS by introducing intra-task voltage scaling using a Linear Programming (LP) formulation to further reduce the energy consumption. Through rigorous simulations, we compare the performance of our proposed algorithms with a few approaches presented in the literature. The results demonstrate that our algorithms are capable of obtaining energy-efficient schedules using less optimization time. On the average, our algorithms produce schedules which consume 10% less energy with more than 47% reduction in optimization time when compared to a few approaches presented in the literature. In particular, our algorithms perform better in generating energy-efficient schedules for larger task graphs. Our results show a reduction of up to 57% in energy consumption for larger task graphs compared to other approaches.
ISSN:1045-9219
1558-2183
DOI:10.1109/TPDS.2008.55