Loading…

Tetrahydroborate sodalite nanocrystals: Low temperature synthesis and thermally controlled intra-cage reactions for hydrogen release of nano- and micro crystals

Tetrahydroborate sodalite nanoparticles were successfully synthesized under low temperature hydrothermal conditions (333 K) from high alkaline aluminosilicate gels and NaBH 4 salt. The products were characterized by X-ray powder diffraction, scanning electron microscopy, FTIR spectroscopy and thermo...

Full description

Saved in:
Bibliographic Details
Published in:Microporous and mesoporous materials 2010-07, Vol.132 (1), p.210-218
Main Authors: Buhl, Josef-Christian, Schomborg, Lars, Rüscher, Claus Henning
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-c789756376b3e6cf0ea35f5e225b5be59c05d0cdd0ae21131885050ccb43ba213
cites cdi_FETCH-LOGICAL-c378t-c789756376b3e6cf0ea35f5e225b5be59c05d0cdd0ae21131885050ccb43ba213
container_end_page 218
container_issue 1
container_start_page 210
container_title Microporous and mesoporous materials
container_volume 132
creator Buhl, Josef-Christian
Schomborg, Lars
Rüscher, Claus Henning
description Tetrahydroborate sodalite nanoparticles were successfully synthesized under low temperature hydrothermal conditions (333 K) from high alkaline aluminosilicate gels and NaBH 4 salt. The products were characterized by X-ray powder diffraction, scanning electron microscopy, FTIR spectroscopy and thermogravimetry in comparison with the microcrystalline sample Na 8[AlSiO 4] 6(BH 4) 2· NaBH 4-sodalite of 25 nm average crystal size agglomerated by X-ray amorphous hydrosodalite type phase to bigger particles up to ∼100 nm was observed after a reaction period of 12 h. The sodalite host framework protects the BH 4 - ions from hydrolysis under open conditions at room temperature. Hydrogen release is detected via nitrate tracer reduction in temperature dependent IR (TIR) experiments. A total conversion of the BH 4 groups for the nanocrystalline sodalite sample is reached at 773 K whereas a larger amount of the BH 4 - -units remained stable within the microcrystalline sample under the same conditions. This can be explained by the smaller crystal size and the high amount of inter grown hydrosodalite type phase in the BH 4 - -sodalite nanocrystals compared to the microcrystals. The minor hydrosodalite type phase also present in the microcrystalline sample can be reloaded with water and the main hydrogen release reaction BH 4 - + 2H 2O => 4H 2 + BO 2 − can be continued.
doi_str_mv 10.1016/j.micromeso.2010.02.022
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671246706</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1387181110000661</els_id><sourcerecordid>1671246706</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-c789756376b3e6cf0ea35f5e225b5be59c05d0cdd0ae21131885050ccb43ba213</originalsourceid><addsrcrecordid>eNqFkc9qHDEMxofSQtK0zxBfCr3Mxn_W9mxvIbRNYKGX9Gw0tibx4rG3trdl3qaPWmc3ybUg0If4SZ9ldd0loytGmbrarWZvc5qxpBWnrUp5C_6mO2eDFr2gG_G2aTHong2MnXXvS9lRyjTj7Lz7e481w-PichpThoqkJAfBNxEhJpuXUiGUL2Sb_pCK8x4bdMgNW2J9xOILgehIk3mGEBZiU6w5hYCO-Kagt_CAJCPY6lMsZEqZHO0eMLZyQChI0nR064-zjuuQF-cP3bupJfz4nC-6n9--3t_c9tsf3-9urre9FXqovdXDRksltBoFKjtRBCEniZzLUY4oN5ZKR61zFJAzJtgwSCqpteNajMCZuOg-n-buc_p1wFLN7IvFECBiOhTDVPuwtdJUNVSf0PbOUjJOZp_9DHkxjJqnm5ideb2JebqJobwFb52fnk2gWAhThmh9eW3nXAlFh3Xjrk8cto1_e8ymWI_RovMZbTUu-f96_QPcM6uo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1671246706</pqid></control><display><type>article</type><title>Tetrahydroborate sodalite nanocrystals: Low temperature synthesis and thermally controlled intra-cage reactions for hydrogen release of nano- and micro crystals</title><source>ScienceDirect Freedom Collection</source><creator>Buhl, Josef-Christian ; Schomborg, Lars ; Rüscher, Claus Henning</creator><creatorcontrib>Buhl, Josef-Christian ; Schomborg, Lars ; Rüscher, Claus Henning</creatorcontrib><description>Tetrahydroborate sodalite nanoparticles were successfully synthesized under low temperature hydrothermal conditions (333 K) from high alkaline aluminosilicate gels and NaBH 4 salt. The products were characterized by X-ray powder diffraction, scanning electron microscopy, FTIR spectroscopy and thermogravimetry in comparison with the microcrystalline sample Na 8[AlSiO 4] 6(BH 4) 2· NaBH 4-sodalite of 25 nm average crystal size agglomerated by X-ray amorphous hydrosodalite type phase to bigger particles up to ∼100 nm was observed after a reaction period of 12 h. The sodalite host framework protects the BH 4 - ions from hydrolysis under open conditions at room temperature. Hydrogen release is detected via nitrate tracer reduction in temperature dependent IR (TIR) experiments. A total conversion of the BH 4 groups for the nanocrystalline sodalite sample is reached at 773 K whereas a larger amount of the BH 4 - -units remained stable within the microcrystalline sample under the same conditions. This can be explained by the smaller crystal size and the high amount of inter grown hydrosodalite type phase in the BH 4 - -sodalite nanocrystals compared to the microcrystals. The minor hydrosodalite type phase also present in the microcrystalline sample can be reloaded with water and the main hydrogen release reaction BH 4 - + 2H 2O =&gt; 4H 2 + BO 2 − can be continued.</description><identifier>ISSN: 1387-1811</identifier><identifier>EISSN: 1873-3093</identifier><identifier>DOI: 10.1016/j.micromeso.2010.02.022</identifier><language>eng</language><publisher>San Diego, CA: Elsevier Inc</publisher><subject>Agglomeration ; Chemistry ; Colloidal state and disperse state ; Crystals ; Exact sciences and technology ; General and physical chemistry ; Mathematical analysis ; Model for hydride enclathration ; Nanocrystalline solids ; Nanocrystals ; Nanostructure ; Physical and chemical studies. Granulometry. Electrokinetic phenomena ; Porous materials ; Reduction ; Sodalite ; Synthesis ; Tetrahydroborate sodalite ; Thermal behaviour ; X-rays</subject><ispartof>Microporous and mesoporous materials, 2010-07, Vol.132 (1), p.210-218</ispartof><rights>2010 Elsevier Inc.</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-c789756376b3e6cf0ea35f5e225b5be59c05d0cdd0ae21131885050ccb43ba213</citedby><cites>FETCH-LOGICAL-c378t-c789756376b3e6cf0ea35f5e225b5be59c05d0cdd0ae21131885050ccb43ba213</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22636084$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Buhl, Josef-Christian</creatorcontrib><creatorcontrib>Schomborg, Lars</creatorcontrib><creatorcontrib>Rüscher, Claus Henning</creatorcontrib><title>Tetrahydroborate sodalite nanocrystals: Low temperature synthesis and thermally controlled intra-cage reactions for hydrogen release of nano- and micro crystals</title><title>Microporous and mesoporous materials</title><description>Tetrahydroborate sodalite nanoparticles were successfully synthesized under low temperature hydrothermal conditions (333 K) from high alkaline aluminosilicate gels and NaBH 4 salt. The products were characterized by X-ray powder diffraction, scanning electron microscopy, FTIR spectroscopy and thermogravimetry in comparison with the microcrystalline sample Na 8[AlSiO 4] 6(BH 4) 2· NaBH 4-sodalite of 25 nm average crystal size agglomerated by X-ray amorphous hydrosodalite type phase to bigger particles up to ∼100 nm was observed after a reaction period of 12 h. The sodalite host framework protects the BH 4 - ions from hydrolysis under open conditions at room temperature. Hydrogen release is detected via nitrate tracer reduction in temperature dependent IR (TIR) experiments. A total conversion of the BH 4 groups for the nanocrystalline sodalite sample is reached at 773 K whereas a larger amount of the BH 4 - -units remained stable within the microcrystalline sample under the same conditions. This can be explained by the smaller crystal size and the high amount of inter grown hydrosodalite type phase in the BH 4 - -sodalite nanocrystals compared to the microcrystals. The minor hydrosodalite type phase also present in the microcrystalline sample can be reloaded with water and the main hydrogen release reaction BH 4 - + 2H 2O =&gt; 4H 2 + BO 2 − can be continued.</description><subject>Agglomeration</subject><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Crystals</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Mathematical analysis</subject><subject>Model for hydride enclathration</subject><subject>Nanocrystalline solids</subject><subject>Nanocrystals</subject><subject>Nanostructure</subject><subject>Physical and chemical studies. Granulometry. Electrokinetic phenomena</subject><subject>Porous materials</subject><subject>Reduction</subject><subject>Sodalite</subject><subject>Synthesis</subject><subject>Tetrahydroborate sodalite</subject><subject>Thermal behaviour</subject><subject>X-rays</subject><issn>1387-1811</issn><issn>1873-3093</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNqFkc9qHDEMxofSQtK0zxBfCr3Mxn_W9mxvIbRNYKGX9Gw0tibx4rG3trdl3qaPWmc3ybUg0If4SZ9ldd0loytGmbrarWZvc5qxpBWnrUp5C_6mO2eDFr2gG_G2aTHong2MnXXvS9lRyjTj7Lz7e481w-PichpThoqkJAfBNxEhJpuXUiGUL2Sb_pCK8x4bdMgNW2J9xOILgehIk3mGEBZiU6w5hYCO-Kagt_CAJCPY6lMsZEqZHO0eMLZyQChI0nR064-zjuuQF-cP3bupJfz4nC-6n9--3t_c9tsf3-9urre9FXqovdXDRksltBoFKjtRBCEniZzLUY4oN5ZKR61zFJAzJtgwSCqpteNajMCZuOg-n-buc_p1wFLN7IvFECBiOhTDVPuwtdJUNVSf0PbOUjJOZp_9DHkxjJqnm5ideb2JebqJobwFb52fnk2gWAhThmh9eW3nXAlFh3Xjrk8cto1_e8ymWI_RovMZbTUu-f96_QPcM6uo</recordid><startdate>20100701</startdate><enddate>20100701</enddate><creator>Buhl, Josef-Christian</creator><creator>Schomborg, Lars</creator><creator>Rüscher, Claus Henning</creator><general>Elsevier Inc</general><general>Elsevier</general><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QQ</scope><scope>7SR</scope><scope>7U5</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope></search><sort><creationdate>20100701</creationdate><title>Tetrahydroborate sodalite nanocrystals: Low temperature synthesis and thermally controlled intra-cage reactions for hydrogen release of nano- and micro crystals</title><author>Buhl, Josef-Christian ; Schomborg, Lars ; Rüscher, Claus Henning</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-c789756376b3e6cf0ea35f5e225b5be59c05d0cdd0ae21131885050ccb43ba213</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Agglomeration</topic><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Crystals</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Mathematical analysis</topic><topic>Model for hydride enclathration</topic><topic>Nanocrystalline solids</topic><topic>Nanocrystals</topic><topic>Nanostructure</topic><topic>Physical and chemical studies. Granulometry. Electrokinetic phenomena</topic><topic>Porous materials</topic><topic>Reduction</topic><topic>Sodalite</topic><topic>Synthesis</topic><topic>Tetrahydroborate sodalite</topic><topic>Thermal behaviour</topic><topic>X-rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Buhl, Josef-Christian</creatorcontrib><creatorcontrib>Schomborg, Lars</creatorcontrib><creatorcontrib>Rüscher, Claus Henning</creatorcontrib><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><jtitle>Microporous and mesoporous materials</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Buhl, Josef-Christian</au><au>Schomborg, Lars</au><au>Rüscher, Claus Henning</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Tetrahydroborate sodalite nanocrystals: Low temperature synthesis and thermally controlled intra-cage reactions for hydrogen release of nano- and micro crystals</atitle><jtitle>Microporous and mesoporous materials</jtitle><date>2010-07-01</date><risdate>2010</risdate><volume>132</volume><issue>1</issue><spage>210</spage><epage>218</epage><pages>210-218</pages><issn>1387-1811</issn><eissn>1873-3093</eissn><abstract>Tetrahydroborate sodalite nanoparticles were successfully synthesized under low temperature hydrothermal conditions (333 K) from high alkaline aluminosilicate gels and NaBH 4 salt. The products were characterized by X-ray powder diffraction, scanning electron microscopy, FTIR spectroscopy and thermogravimetry in comparison with the microcrystalline sample Na 8[AlSiO 4] 6(BH 4) 2· NaBH 4-sodalite of 25 nm average crystal size agglomerated by X-ray amorphous hydrosodalite type phase to bigger particles up to ∼100 nm was observed after a reaction period of 12 h. The sodalite host framework protects the BH 4 - ions from hydrolysis under open conditions at room temperature. Hydrogen release is detected via nitrate tracer reduction in temperature dependent IR (TIR) experiments. A total conversion of the BH 4 groups for the nanocrystalline sodalite sample is reached at 773 K whereas a larger amount of the BH 4 - -units remained stable within the microcrystalline sample under the same conditions. This can be explained by the smaller crystal size and the high amount of inter grown hydrosodalite type phase in the BH 4 - -sodalite nanocrystals compared to the microcrystals. The minor hydrosodalite type phase also present in the microcrystalline sample can be reloaded with water and the main hydrogen release reaction BH 4 - + 2H 2O =&gt; 4H 2 + BO 2 − can be continued.</abstract><cop>San Diego, CA</cop><pub>Elsevier Inc</pub><doi>10.1016/j.micromeso.2010.02.022</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1387-1811
ispartof Microporous and mesoporous materials, 2010-07, Vol.132 (1), p.210-218
issn 1387-1811
1873-3093
language eng
recordid cdi_proquest_miscellaneous_1671246706
source ScienceDirect Freedom Collection
subjects Agglomeration
Chemistry
Colloidal state and disperse state
Crystals
Exact sciences and technology
General and physical chemistry
Mathematical analysis
Model for hydride enclathration
Nanocrystalline solids
Nanocrystals
Nanostructure
Physical and chemical studies. Granulometry. Electrokinetic phenomena
Porous materials
Reduction
Sodalite
Synthesis
Tetrahydroborate sodalite
Thermal behaviour
X-rays
title Tetrahydroborate sodalite nanocrystals: Low temperature synthesis and thermally controlled intra-cage reactions for hydrogen release of nano- and micro crystals
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T06%3A44%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Tetrahydroborate%20sodalite%20nanocrystals:%20Low%20temperature%20synthesis%20and%20thermally%20controlled%20intra-cage%20reactions%20for%20hydrogen%20release%20of%20nano-%20and%20micro%20crystals&rft.jtitle=Microporous%20and%20mesoporous%20materials&rft.au=Buhl,%20Josef-Christian&rft.date=2010-07-01&rft.volume=132&rft.issue=1&rft.spage=210&rft.epage=218&rft.pages=210-218&rft.issn=1387-1811&rft.eissn=1873-3093&rft_id=info:doi/10.1016/j.micromeso.2010.02.022&rft_dat=%3Cproquest_cross%3E1671246706%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-c789756376b3e6cf0ea35f5e225b5be59c05d0cdd0ae21131885050ccb43ba213%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1671246706&rft_id=info:pmid/&rfr_iscdi=true