Loading…

Controlling a Magnetic Force Microscope to Track a Magnetized Nanosize Particle

In this paper, we introduce a scheme for tracking a magnetic nanoparticle moving in three dimensions using a magnetic force microscope (MFM). The stray magnetic field of the magnetic particle induces a shift in the phase of oscillation of the tip of the MFM. We present a nonlinear feedback control l...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on nanotechnology 2010-05, Vol.9 (3), p.367-374
Main Authors: Baronov, Dimitar, Andersson, Sean B
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c390t-9f010519b80c8949ca788419462ee4d37d7ca912231aad4b8415894fdd40b2003
cites cdi_FETCH-LOGICAL-c390t-9f010519b80c8949ca788419462ee4d37d7ca912231aad4b8415894fdd40b2003
container_end_page 374
container_issue 3
container_start_page 367
container_title IEEE transactions on nanotechnology
container_volume 9
creator Baronov, Dimitar
Andersson, Sean B
description In this paper, we introduce a scheme for tracking a magnetic nanoparticle moving in three dimensions using a magnetic force microscope (MFM). The stray magnetic field of the magnetic particle induces a shift in the phase of oscillation of the tip of the MFM. We present a nonlinear feedback control law that translates the measurement of this phase shift into a trajectory for the tip of the MFM and prove that this trajectory converges to a neighborhood of the magnetic particle. The viability of the proposed tracking scheme is verified through numerical simulations of the tracking algorithm.
doi_str_mv 10.1109/TNANO.2009.2029982
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671252817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5223680</ieee_id><sourcerecordid>855688683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-9f010519b80c8949ca788419462ee4d37d7ca912231aad4b8415894fdd40b2003</originalsourceid><addsrcrecordid>eNp9kU9LAzEQxYMoWKtfQC8BEb1sTbKbTXIsxarQPx4qeAtpNlu2bjc12R700zu1pYIHL8nA_N4w8x5Cl5T0KCXqfjbpT6Y9RoiChykl2RHqUJXRhBDJj6HmaZ5Qxt9O0VmMS0KoyLnsoOnAN23wdV01C2zw2Cwa11YWD32wDo8rG3y0fu1w6_EsGPv-C325Ak9M4yNU-MUEkNXuHJ2Upo7uYv930evwYTZ4SkbTx-dBf5TYVJE2USWhhFM1l8RKlSlrhJQZLJwz57IiFYWwRlHGUmpMkc2hx4EriyIjczgz7aLb3dx18B8bF1u9qqJ1dW0a5zdRS85zKXOZAnn3L0lzAb4wSQWg13_Qpd-EBu7QlDBBpRR0O5DtqK03MbhSr0O1MuETIL1NQ_-kobdp6H0aILrZjzbRmroMprFVPCgZk2AH58Bd7bjKOXdoczAilyT9BrBskHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027188713</pqid></control><display><type>article</type><title>Controlling a Magnetic Force Microscope to Track a Magnetized Nanosize Particle</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Baronov, Dimitar ; Andersson, Sean B</creator><creatorcontrib>Baronov, Dimitar ; Andersson, Sean B</creatorcontrib><description>In this paper, we introduce a scheme for tracking a magnetic nanoparticle moving in three dimensions using a magnetic force microscope (MFM). The stray magnetic field of the magnetic particle induces a shift in the phase of oscillation of the tip of the MFM. We present a nonlinear feedback control law that translates the measurement of this phase shift into a trajectory for the tip of the MFM and prove that this trajectory converges to a neighborhood of the magnetic particle. The viability of the proposed tracking scheme is verified through numerical simulations of the tracking algorithm.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2009.2029982</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Feedback control ; Force control ; Magnetic field measurement ; Magnetic fields ; Magnetic force microscopy ; Magnetic force microscopy (MFM) ; Magnetic forces ; Magnetic particles ; Materials science ; Nanocomposites ; Nanomaterials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; nanotechnology ; nonlinear systems ; Numerical simulation ; Oscillations ; Other topics in nanoscale materials and structures ; Particle measurements ; Particle tracking ; Phase measurement ; Phase shift ; Physics ; Three dimensional ; Tracking ; Trajectories</subject><ispartof>IEEE transactions on nanotechnology, 2010-05, Vol.9 (3), p.367-374</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-9f010519b80c8949ca788419462ee4d37d7ca912231aad4b8415894fdd40b2003</citedby><cites>FETCH-LOGICAL-c390t-9f010519b80c8949ca788419462ee4d37d7ca912231aad4b8415894fdd40b2003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5223680$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22805155$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baronov, Dimitar</creatorcontrib><creatorcontrib>Andersson, Sean B</creatorcontrib><title>Controlling a Magnetic Force Microscope to Track a Magnetized Nanosize Particle</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>In this paper, we introduce a scheme for tracking a magnetic nanoparticle moving in three dimensions using a magnetic force microscope (MFM). The stray magnetic field of the magnetic particle induces a shift in the phase of oscillation of the tip of the MFM. We present a nonlinear feedback control law that translates the measurement of this phase shift into a trajectory for the tip of the MFM and prove that this trajectory converges to a neighborhood of the magnetic particle. The viability of the proposed tracking scheme is verified through numerical simulations of the tracking algorithm.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Force control</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Magnetic force microscopy</subject><subject>Magnetic force microscopy (MFM)</subject><subject>Magnetic forces</subject><subject>Magnetic particles</subject><subject>Materials science</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>nanotechnology</subject><subject>nonlinear systems</subject><subject>Numerical simulation</subject><subject>Oscillations</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Particle measurements</subject><subject>Particle tracking</subject><subject>Phase measurement</subject><subject>Phase shift</subject><subject>Physics</subject><subject>Three dimensional</subject><subject>Tracking</subject><subject>Trajectories</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LAzEQxYMoWKtfQC8BEb1sTbKbTXIsxarQPx4qeAtpNlu2bjc12R700zu1pYIHL8nA_N4w8x5Cl5T0KCXqfjbpT6Y9RoiChykl2RHqUJXRhBDJj6HmaZ5Qxt9O0VmMS0KoyLnsoOnAN23wdV01C2zw2Cwa11YWD32wDo8rG3y0fu1w6_EsGPv-C325Ak9M4yNU-MUEkNXuHJ2Upo7uYv930evwYTZ4SkbTx-dBf5TYVJE2USWhhFM1l8RKlSlrhJQZLJwz57IiFYWwRlHGUmpMkc2hx4EriyIjczgz7aLb3dx18B8bF1u9qqJ1dW0a5zdRS85zKXOZAnn3L0lzAb4wSQWg13_Qpd-EBu7QlDBBpRR0O5DtqK03MbhSr0O1MuETIL1NQ_-kobdp6H0aILrZjzbRmroMprFVPCgZk2AH58Bd7bjKOXdoczAilyT9BrBskHo</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Baronov, Dimitar</creator><creator>Andersson, Sean B</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100501</creationdate><title>Controlling a Magnetic Force Microscope to Track a Magnetized Nanosize Particle</title><author>Baronov, Dimitar ; Andersson, Sean B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-9f010519b80c8949ca788419462ee4d37d7ca912231aad4b8415894fdd40b2003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Force control</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Magnetic force microscopy</topic><topic>Magnetic force microscopy (MFM)</topic><topic>Magnetic forces</topic><topic>Magnetic particles</topic><topic>Materials science</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>nanotechnology</topic><topic>nonlinear systems</topic><topic>Numerical simulation</topic><topic>Oscillations</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Particle measurements</topic><topic>Particle tracking</topic><topic>Phase measurement</topic><topic>Phase shift</topic><topic>Physics</topic><topic>Three dimensional</topic><topic>Tracking</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baronov, Dimitar</creatorcontrib><creatorcontrib>Andersson, Sean B</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baronov, Dimitar</au><au>Andersson, Sean B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling a Magnetic Force Microscope to Track a Magnetized Nanosize Particle</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2010-05-01</date><risdate>2010</risdate><volume>9</volume><issue>3</issue><spage>367</spage><epage>374</epage><pages>367-374</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>In this paper, we introduce a scheme for tracking a magnetic nanoparticle moving in three dimensions using a magnetic force microscope (MFM). The stray magnetic field of the magnetic particle induces a shift in the phase of oscillation of the tip of the MFM. We present a nonlinear feedback control law that translates the measurement of this phase shift into a trajectory for the tip of the MFM and prove that this trajectory converges to a neighborhood of the magnetic particle. The viability of the proposed tracking scheme is verified through numerical simulations of the tracking algorithm.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2009.2029982</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1536-125X
ispartof IEEE transactions on nanotechnology, 2010-05, Vol.9 (3), p.367-374
issn 1536-125X
1941-0085
language eng
recordid cdi_proquest_miscellaneous_1671252817
source IEEE Electronic Library (IEL) Journals
subjects Cross-disciplinary physics: materials science
rheology
Exact sciences and technology
Feedback control
Force control
Magnetic field measurement
Magnetic fields
Magnetic force microscopy
Magnetic force microscopy (MFM)
Magnetic forces
Magnetic particles
Materials science
Nanocomposites
Nanomaterials
Nanoscale materials and structures: fabrication and characterization
Nanostructure
nanotechnology
nonlinear systems
Numerical simulation
Oscillations
Other topics in nanoscale materials and structures
Particle measurements
Particle tracking
Phase measurement
Phase shift
Physics
Three dimensional
Tracking
Trajectories
title Controlling a Magnetic Force Microscope to Track a Magnetized Nanosize Particle
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20a%20Magnetic%20Force%20Microscope%20to%20Track%20a%20Magnetized%20Nanosize%20Particle&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Baronov,%20Dimitar&rft.date=2010-05-01&rft.volume=9&rft.issue=3&rft.spage=367&rft.epage=374&rft.pages=367-374&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2009.2029982&rft_dat=%3Cproquest_cross%3E855688683%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-9f010519b80c8949ca788419462ee4d37d7ca912231aad4b8415894fdd40b2003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1027188713&rft_id=info:pmid/&rft_ieee_id=5223680&rfr_iscdi=true