Loading…
Controlling a Magnetic Force Microscope to Track a Magnetized Nanosize Particle
In this paper, we introduce a scheme for tracking a magnetic nanoparticle moving in three dimensions using a magnetic force microscope (MFM). The stray magnetic field of the magnetic particle induces a shift in the phase of oscillation of the tip of the MFM. We present a nonlinear feedback control l...
Saved in:
Published in: | IEEE transactions on nanotechnology 2010-05, Vol.9 (3), p.367-374 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c390t-9f010519b80c8949ca788419462ee4d37d7ca912231aad4b8415894fdd40b2003 |
---|---|
cites | cdi_FETCH-LOGICAL-c390t-9f010519b80c8949ca788419462ee4d37d7ca912231aad4b8415894fdd40b2003 |
container_end_page | 374 |
container_issue | 3 |
container_start_page | 367 |
container_title | IEEE transactions on nanotechnology |
container_volume | 9 |
creator | Baronov, Dimitar Andersson, Sean B |
description | In this paper, we introduce a scheme for tracking a magnetic nanoparticle moving in three dimensions using a magnetic force microscope (MFM). The stray magnetic field of the magnetic particle induces a shift in the phase of oscillation of the tip of the MFM. We present a nonlinear feedback control law that translates the measurement of this phase shift into a trajectory for the tip of the MFM and prove that this trajectory converges to a neighborhood of the magnetic particle. The viability of the proposed tracking scheme is verified through numerical simulations of the tracking algorithm. |
doi_str_mv | 10.1109/TNANO.2009.2029982 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671252817</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>5223680</ieee_id><sourcerecordid>855688683</sourcerecordid><originalsourceid>FETCH-LOGICAL-c390t-9f010519b80c8949ca788419462ee4d37d7ca912231aad4b8415894fdd40b2003</originalsourceid><addsrcrecordid>eNp9kU9LAzEQxYMoWKtfQC8BEb1sTbKbTXIsxarQPx4qeAtpNlu2bjc12R700zu1pYIHL8nA_N4w8x5Cl5T0KCXqfjbpT6Y9RoiChykl2RHqUJXRhBDJj6HmaZ5Qxt9O0VmMS0KoyLnsoOnAN23wdV01C2zw2Cwa11YWD32wDo8rG3y0fu1w6_EsGPv-C325Ak9M4yNU-MUEkNXuHJ2Upo7uYv930evwYTZ4SkbTx-dBf5TYVJE2USWhhFM1l8RKlSlrhJQZLJwz57IiFYWwRlHGUmpMkc2hx4EriyIjczgz7aLb3dx18B8bF1u9qqJ1dW0a5zdRS85zKXOZAnn3L0lzAb4wSQWg13_Qpd-EBu7QlDBBpRR0O5DtqK03MbhSr0O1MuETIL1NQ_-kobdp6H0aILrZjzbRmroMprFVPCgZk2AH58Bd7bjKOXdoczAilyT9BrBskHo</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1027188713</pqid></control><display><type>article</type><title>Controlling a Magnetic Force Microscope to Track a Magnetized Nanosize Particle</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Baronov, Dimitar ; Andersson, Sean B</creator><creatorcontrib>Baronov, Dimitar ; Andersson, Sean B</creatorcontrib><description>In this paper, we introduce a scheme for tracking a magnetic nanoparticle moving in three dimensions using a magnetic force microscope (MFM). The stray magnetic field of the magnetic particle induces a shift in the phase of oscillation of the tip of the MFM. We present a nonlinear feedback control law that translates the measurement of this phase shift into a trajectory for the tip of the MFM and prove that this trajectory converges to a neighborhood of the magnetic particle. The viability of the proposed tracking scheme is verified through numerical simulations of the tracking algorithm.</description><identifier>ISSN: 1536-125X</identifier><identifier>EISSN: 1941-0085</identifier><identifier>DOI: 10.1109/TNANO.2009.2029982</identifier><identifier>CODEN: ITNECU</identifier><language>eng</language><publisher>New York, NY: IEEE</publisher><subject>Cross-disciplinary physics: materials science; rheology ; Exact sciences and technology ; Feedback control ; Force control ; Magnetic field measurement ; Magnetic fields ; Magnetic force microscopy ; Magnetic force microscopy (MFM) ; Magnetic forces ; Magnetic particles ; Materials science ; Nanocomposites ; Nanomaterials ; Nanoscale materials and structures: fabrication and characterization ; Nanostructure ; nanotechnology ; nonlinear systems ; Numerical simulation ; Oscillations ; Other topics in nanoscale materials and structures ; Particle measurements ; Particle tracking ; Phase measurement ; Phase shift ; Physics ; Three dimensional ; Tracking ; Trajectories</subject><ispartof>IEEE transactions on nanotechnology, 2010-05, Vol.9 (3), p.367-374</ispartof><rights>2015 INIST-CNRS</rights><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) May 2010</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c390t-9f010519b80c8949ca788419462ee4d37d7ca912231aad4b8415894fdd40b2003</citedby><cites>FETCH-LOGICAL-c390t-9f010519b80c8949ca788419462ee4d37d7ca912231aad4b8415894fdd40b2003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/5223680$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27924,27925,54796</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22805155$$DView record in Pascal Francis$$Hfree_for_read</backlink></links><search><creatorcontrib>Baronov, Dimitar</creatorcontrib><creatorcontrib>Andersson, Sean B</creatorcontrib><title>Controlling a Magnetic Force Microscope to Track a Magnetized Nanosize Particle</title><title>IEEE transactions on nanotechnology</title><addtitle>TNANO</addtitle><description>In this paper, we introduce a scheme for tracking a magnetic nanoparticle moving in three dimensions using a magnetic force microscope (MFM). The stray magnetic field of the magnetic particle induces a shift in the phase of oscillation of the tip of the MFM. We present a nonlinear feedback control law that translates the measurement of this phase shift into a trajectory for the tip of the MFM and prove that this trajectory converges to a neighborhood of the magnetic particle. The viability of the proposed tracking scheme is verified through numerical simulations of the tracking algorithm.</description><subject>Cross-disciplinary physics: materials science; rheology</subject><subject>Exact sciences and technology</subject><subject>Feedback control</subject><subject>Force control</subject><subject>Magnetic field measurement</subject><subject>Magnetic fields</subject><subject>Magnetic force microscopy</subject><subject>Magnetic force microscopy (MFM)</subject><subject>Magnetic forces</subject><subject>Magnetic particles</subject><subject>Materials science</subject><subject>Nanocomposites</subject><subject>Nanomaterials</subject><subject>Nanoscale materials and structures: fabrication and characterization</subject><subject>Nanostructure</subject><subject>nanotechnology</subject><subject>nonlinear systems</subject><subject>Numerical simulation</subject><subject>Oscillations</subject><subject>Other topics in nanoscale materials and structures</subject><subject>Particle measurements</subject><subject>Particle tracking</subject><subject>Phase measurement</subject><subject>Phase shift</subject><subject>Physics</subject><subject>Three dimensional</subject><subject>Tracking</subject><subject>Trajectories</subject><issn>1536-125X</issn><issn>1941-0085</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2010</creationdate><recordtype>article</recordtype><recordid>eNp9kU9LAzEQxYMoWKtfQC8BEb1sTbKbTXIsxarQPx4qeAtpNlu2bjc12R700zu1pYIHL8nA_N4w8x5Cl5T0KCXqfjbpT6Y9RoiChykl2RHqUJXRhBDJj6HmaZ5Qxt9O0VmMS0KoyLnsoOnAN23wdV01C2zw2Cwa11YWD32wDo8rG3y0fu1w6_EsGPv-C325Ak9M4yNU-MUEkNXuHJ2Upo7uYv930evwYTZ4SkbTx-dBf5TYVJE2USWhhFM1l8RKlSlrhJQZLJwz57IiFYWwRlHGUmpMkc2hx4EriyIjczgz7aLb3dx18B8bF1u9qqJ1dW0a5zdRS85zKXOZAnn3L0lzAb4wSQWg13_Qpd-EBu7QlDBBpRR0O5DtqK03MbhSr0O1MuETIL1NQ_-kobdp6H0aILrZjzbRmroMprFVPCgZk2AH58Bd7bjKOXdoczAilyT9BrBskHo</recordid><startdate>20100501</startdate><enddate>20100501</enddate><creator>Baronov, Dimitar</creator><creator>Andersson, Sean B</creator><general>IEEE</general><general>Institute of Electrical and Electronics Engineers</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>97E</scope><scope>RIA</scope><scope>RIE</scope><scope>IQODW</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>F28</scope><scope>FR3</scope></search><sort><creationdate>20100501</creationdate><title>Controlling a Magnetic Force Microscope to Track a Magnetized Nanosize Particle</title><author>Baronov, Dimitar ; Andersson, Sean B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c390t-9f010519b80c8949ca788419462ee4d37d7ca912231aad4b8415894fdd40b2003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2010</creationdate><topic>Cross-disciplinary physics: materials science; rheology</topic><topic>Exact sciences and technology</topic><topic>Feedback control</topic><topic>Force control</topic><topic>Magnetic field measurement</topic><topic>Magnetic fields</topic><topic>Magnetic force microscopy</topic><topic>Magnetic force microscopy (MFM)</topic><topic>Magnetic forces</topic><topic>Magnetic particles</topic><topic>Materials science</topic><topic>Nanocomposites</topic><topic>Nanomaterials</topic><topic>Nanoscale materials and structures: fabrication and characterization</topic><topic>Nanostructure</topic><topic>nanotechnology</topic><topic>nonlinear systems</topic><topic>Numerical simulation</topic><topic>Oscillations</topic><topic>Other topics in nanoscale materials and structures</topic><topic>Particle measurements</topic><topic>Particle tracking</topic><topic>Phase measurement</topic><topic>Phase shift</topic><topic>Physics</topic><topic>Three dimensional</topic><topic>Tracking</topic><topic>Trajectories</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Baronov, Dimitar</creatorcontrib><creatorcontrib>Andersson, Sean B</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 2005-present</collection><collection>IEEE All-Society Periodicals Package (ASPP) Online</collection><collection>IEEE/IET Electronic Library (IEL)</collection><collection>Pascal-Francis</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><jtitle>IEEE transactions on nanotechnology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Baronov, Dimitar</au><au>Andersson, Sean B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Controlling a Magnetic Force Microscope to Track a Magnetized Nanosize Particle</atitle><jtitle>IEEE transactions on nanotechnology</jtitle><stitle>TNANO</stitle><date>2010-05-01</date><risdate>2010</risdate><volume>9</volume><issue>3</issue><spage>367</spage><epage>374</epage><pages>367-374</pages><issn>1536-125X</issn><eissn>1941-0085</eissn><coden>ITNECU</coden><abstract>In this paper, we introduce a scheme for tracking a magnetic nanoparticle moving in three dimensions using a magnetic force microscope (MFM). The stray magnetic field of the magnetic particle induces a shift in the phase of oscillation of the tip of the MFM. We present a nonlinear feedback control law that translates the measurement of this phase shift into a trajectory for the tip of the MFM and prove that this trajectory converges to a neighborhood of the magnetic particle. The viability of the proposed tracking scheme is verified through numerical simulations of the tracking algorithm.</abstract><cop>New York, NY</cop><pub>IEEE</pub><doi>10.1109/TNANO.2009.2029982</doi><tpages>8</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1536-125X |
ispartof | IEEE transactions on nanotechnology, 2010-05, Vol.9 (3), p.367-374 |
issn | 1536-125X 1941-0085 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671252817 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Cross-disciplinary physics: materials science rheology Exact sciences and technology Feedback control Force control Magnetic field measurement Magnetic fields Magnetic force microscopy Magnetic force microscopy (MFM) Magnetic forces Magnetic particles Materials science Nanocomposites Nanomaterials Nanoscale materials and structures: fabrication and characterization Nanostructure nanotechnology nonlinear systems Numerical simulation Oscillations Other topics in nanoscale materials and structures Particle measurements Particle tracking Phase measurement Phase shift Physics Three dimensional Tracking Trajectories |
title | Controlling a Magnetic Force Microscope to Track a Magnetized Nanosize Particle |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T11%3A54%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Controlling%20a%20Magnetic%20Force%20Microscope%20to%20Track%20a%20Magnetized%20Nanosize%20Particle&rft.jtitle=IEEE%20transactions%20on%20nanotechnology&rft.au=Baronov,%20Dimitar&rft.date=2010-05-01&rft.volume=9&rft.issue=3&rft.spage=367&rft.epage=374&rft.pages=367-374&rft.issn=1536-125X&rft.eissn=1941-0085&rft.coden=ITNECU&rft_id=info:doi/10.1109/TNANO.2009.2029982&rft_dat=%3Cproquest_cross%3E855688683%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c390t-9f010519b80c8949ca788419462ee4d37d7ca912231aad4b8415894fdd40b2003%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1027188713&rft_id=info:pmid/&rft_ieee_id=5223680&rfr_iscdi=true |