Loading…

A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network

The wavelet transform is a powerful tool in the analysis of the power transformer transient phenomena because of its ability to extract information from the transient signals simultaneously in both the time and frequency domain. This paper presents a novel technique for accurate discrimination betwe...

Full description

Saved in:
Bibliographic Details
Published in:IEEE transactions on power delivery 2001-10, Vol.16 (4), p.654-660
Main Authors: Mao, P.L., Aggarwal, R.K.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c434t-1ae307b7df276ead5f7dd2239e041975f86e27e5d8685b45c3dec436966cede53
cites cdi_FETCH-LOGICAL-c434t-1ae307b7df276ead5f7dd2239e041975f86e27e5d8685b45c3dec436966cede53
container_end_page 660
container_issue 4
container_start_page 654
container_title IEEE transactions on power delivery
container_volume 16
creator Mao, P.L.
Aggarwal, R.K.
description The wavelet transform is a powerful tool in the analysis of the power transformer transient phenomena because of its ability to extract information from the transient signals simultaneously in both the time and frequency domain. This paper presents a novel technique for accurate discrimination between an internal fault and a magnetizing inrush current in the power transformer by combining wavelet transforms with neural networks. The wavelet transform is firstly applied to decompose the differential current signals of the power transformer into a series of detailed wavelet components. The spectral energies of the wavelet components are calculated and then employed to train a neural network to discriminate an internal fault from the magnetizing inrush current. The simulated results presented clearly show that the proposed technique can accurately discriminate between an internal fault and a magnetizing inrush current in power transformer protection.
doi_str_mv 10.1109/61.956753
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671256436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>956753</ieee_id><sourcerecordid>1671256436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-1ae307b7df276ead5f7dd2239e041975f86e27e5d8685b45c3dec436966cede53</originalsourceid><addsrcrecordid>eNqF0TtP5DAQAGDrBNItj4KWyqJARxGwk_iREq04QEK6BurIa09YQ2IH22F1v4E_fYYgkCiOaqSZzzMeDUIHlJxSSpozTk8bxgWrfqAFbSpR1CWRW2hBpGSFbIT4iXZifCCE1KQhC_Ryjp1_hh6rcQxe6TVOHqc1YN2rGG1ntUrWO-y7t2wKykULLuFxDc4P4BS2Do9-A2Eudj4MECKeonX3WPthZR0YvFF5CKRPg5Uz2MEUVJ9D2vjwuIe2O9VH2H-Pu-ju98Xt8qq4-XN5vTy_KXRd1amgCioiVsJ0peCgDOuEMWVZNUBq2gjWSQ6lAGYkl2xVM10ZyC95w7kGA6zaRcdz37zx0wQxtYONGvpeOfBTbEtZS0E4_x5yWXMmaYa__gspF7RkPH8i06Mv9MFPweV9W5m78UqSMqOTGengYwzQtWOwgwp_W0ra1zu3nLbznbM9nK0FgA_3XvwHGHik-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884663802</pqid></control><display><type>article</type><title>A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Mao, P.L. ; Aggarwal, R.K.</creator><creatorcontrib>Mao, P.L. ; Aggarwal, R.K.</creatorcontrib><description>The wavelet transform is a powerful tool in the analysis of the power transformer transient phenomena because of its ability to extract information from the transient signals simultaneously in both the time and frequency domain. This paper presents a novel technique for accurate discrimination between an internal fault and a magnetizing inrush current in the power transformer by combining wavelet transforms with neural networks. The wavelet transform is firstly applied to decompose the differential current signals of the power transformer into a series of detailed wavelet components. The spectral energies of the wavelet components are calculated and then employed to train a neural network to discriminate an internal fault from the magnetizing inrush current. The simulated results presented clearly show that the proposed technique can accurately discriminate between an internal fault and a magnetizing inrush current in power transformer protection.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/61.956753</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Faults ; Information analysis ; Inrush current ; Magnetic analysis ; Neural networks ; Power transformers ; Signal analysis ; Spectra ; Surge protection ; Transformers ; Transient analysis ; Wavelet ; Wavelet analysis ; Wavelet domain ; Wavelet transforms</subject><ispartof>IEEE transactions on power delivery, 2001-10, Vol.16 (4), p.654-660</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-1ae307b7df276ead5f7dd2239e041975f86e27e5d8685b45c3dec436966cede53</citedby><cites>FETCH-LOGICAL-c434t-1ae307b7df276ead5f7dd2239e041975f86e27e5d8685b45c3dec436966cede53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/956753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Mao, P.L.</creatorcontrib><creatorcontrib>Aggarwal, R.K.</creatorcontrib><title>A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>The wavelet transform is a powerful tool in the analysis of the power transformer transient phenomena because of its ability to extract information from the transient signals simultaneously in both the time and frequency domain. This paper presents a novel technique for accurate discrimination between an internal fault and a magnetizing inrush current in the power transformer by combining wavelet transforms with neural networks. The wavelet transform is firstly applied to decompose the differential current signals of the power transformer into a series of detailed wavelet components. The spectral energies of the wavelet components are calculated and then employed to train a neural network to discriminate an internal fault from the magnetizing inrush current. The simulated results presented clearly show that the proposed technique can accurately discriminate between an internal fault and a magnetizing inrush current in power transformer protection.</description><subject>Computer simulation</subject><subject>Faults</subject><subject>Information analysis</subject><subject>Inrush current</subject><subject>Magnetic analysis</subject><subject>Neural networks</subject><subject>Power transformers</subject><subject>Signal analysis</subject><subject>Spectra</subject><subject>Surge protection</subject><subject>Transformers</subject><subject>Transient analysis</subject><subject>Wavelet</subject><subject>Wavelet analysis</subject><subject>Wavelet domain</subject><subject>Wavelet transforms</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqF0TtP5DAQAGDrBNItj4KWyqJARxGwk_iREq04QEK6BurIa09YQ2IH22F1v4E_fYYgkCiOaqSZzzMeDUIHlJxSSpozTk8bxgWrfqAFbSpR1CWRW2hBpGSFbIT4iXZifCCE1KQhC_Ryjp1_hh6rcQxe6TVOHqc1YN2rGG1ntUrWO-y7t2wKykULLuFxDc4P4BS2Do9-A2Eudj4MECKeonX3WPthZR0YvFF5CKRPg5Uz2MEUVJ9D2vjwuIe2O9VH2H-Pu-ju98Xt8qq4-XN5vTy_KXRd1amgCioiVsJ0peCgDOuEMWVZNUBq2gjWSQ6lAGYkl2xVM10ZyC95w7kGA6zaRcdz37zx0wQxtYONGvpeOfBTbEtZS0E4_x5yWXMmaYa__gspF7RkPH8i06Mv9MFPweV9W5m78UqSMqOTGengYwzQtWOwgwp_W0ra1zu3nLbznbM9nK0FgA_3XvwHGHik-A</recordid><startdate>20011001</startdate><enddate>20011001</enddate><creator>Mao, P.L.</creator><creator>Aggarwal, R.K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20011001</creationdate><title>A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network</title><author>Mao, P.L. ; Aggarwal, R.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-1ae307b7df276ead5f7dd2239e041975f86e27e5d8685b45c3dec436966cede53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Computer simulation</topic><topic>Faults</topic><topic>Information analysis</topic><topic>Inrush current</topic><topic>Magnetic analysis</topic><topic>Neural networks</topic><topic>Power transformers</topic><topic>Signal analysis</topic><topic>Spectra</topic><topic>Surge protection</topic><topic>Transformers</topic><topic>Transient analysis</topic><topic>Wavelet</topic><topic>Wavelet analysis</topic><topic>Wavelet domain</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, P.L.</creatorcontrib><creatorcontrib>Aggarwal, R.K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, P.L.</au><au>Aggarwal, R.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2001-10-01</date><risdate>2001</risdate><volume>16</volume><issue>4</issue><spage>654</spage><epage>660</epage><pages>654-660</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>The wavelet transform is a powerful tool in the analysis of the power transformer transient phenomena because of its ability to extract information from the transient signals simultaneously in both the time and frequency domain. This paper presents a novel technique for accurate discrimination between an internal fault and a magnetizing inrush current in the power transformer by combining wavelet transforms with neural networks. The wavelet transform is firstly applied to decompose the differential current signals of the power transformer into a series of detailed wavelet components. The spectral energies of the wavelet components are calculated and then employed to train a neural network to discriminate an internal fault from the magnetizing inrush current. The simulated results presented clearly show that the proposed technique can accurately discriminate between an internal fault and a magnetizing inrush current in power transformer protection.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/61.956753</doi><tpages>7</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0885-8977
ispartof IEEE transactions on power delivery, 2001-10, Vol.16 (4), p.654-660
issn 0885-8977
1937-4208
language eng
recordid cdi_proquest_miscellaneous_1671256436
source IEEE Electronic Library (IEL) Journals
subjects Computer simulation
Faults
Information analysis
Inrush current
Magnetic analysis
Neural networks
Power transformers
Signal analysis
Spectra
Surge protection
Transformers
Transient analysis
Wavelet
Wavelet analysis
Wavelet domain
Wavelet transforms
title A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20approach%20to%20the%20classification%20of%20the%20transient%20phenomena%20in%20power%20transformers%20using%20combined%20wavelet%20transform%20and%20neural%20network&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Mao,%20P.L.&rft.date=2001-10-01&rft.volume=16&rft.issue=4&rft.spage=654&rft.epage=660&rft.pages=654-660&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/61.956753&rft_dat=%3Cproquest_cross%3E1671256436%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-1ae307b7df276ead5f7dd2239e041975f86e27e5d8685b45c3dec436966cede53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884663802&rft_id=info:pmid/&rft_ieee_id=956753&rfr_iscdi=true