Loading…
A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network
The wavelet transform is a powerful tool in the analysis of the power transformer transient phenomena because of its ability to extract information from the transient signals simultaneously in both the time and frequency domain. This paper presents a novel technique for accurate discrimination betwe...
Saved in:
Published in: | IEEE transactions on power delivery 2001-10, Vol.16 (4), p.654-660 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c434t-1ae307b7df276ead5f7dd2239e041975f86e27e5d8685b45c3dec436966cede53 |
---|---|
cites | cdi_FETCH-LOGICAL-c434t-1ae307b7df276ead5f7dd2239e041975f86e27e5d8685b45c3dec436966cede53 |
container_end_page | 660 |
container_issue | 4 |
container_start_page | 654 |
container_title | IEEE transactions on power delivery |
container_volume | 16 |
creator | Mao, P.L. Aggarwal, R.K. |
description | The wavelet transform is a powerful tool in the analysis of the power transformer transient phenomena because of its ability to extract information from the transient signals simultaneously in both the time and frequency domain. This paper presents a novel technique for accurate discrimination between an internal fault and a magnetizing inrush current in the power transformer by combining wavelet transforms with neural networks. The wavelet transform is firstly applied to decompose the differential current signals of the power transformer into a series of detailed wavelet components. The spectral energies of the wavelet components are calculated and then employed to train a neural network to discriminate an internal fault from the magnetizing inrush current. The simulated results presented clearly show that the proposed technique can accurately discriminate between an internal fault and a magnetizing inrush current in power transformer protection. |
doi_str_mv | 10.1109/61.956753 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_1671256436</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><ieee_id>956753</ieee_id><sourcerecordid>1671256436</sourcerecordid><originalsourceid>FETCH-LOGICAL-c434t-1ae307b7df276ead5f7dd2239e041975f86e27e5d8685b45c3dec436966cede53</originalsourceid><addsrcrecordid>eNqF0TtP5DAQAGDrBNItj4KWyqJARxGwk_iREq04QEK6BurIa09YQ2IH22F1v4E_fYYgkCiOaqSZzzMeDUIHlJxSSpozTk8bxgWrfqAFbSpR1CWRW2hBpGSFbIT4iXZifCCE1KQhC_Ryjp1_hh6rcQxe6TVOHqc1YN2rGG1ntUrWO-y7t2wKykULLuFxDc4P4BS2Do9-A2Eudj4MECKeonX3WPthZR0YvFF5CKRPg5Uz2MEUVJ9D2vjwuIe2O9VH2H-Pu-ju98Xt8qq4-XN5vTy_KXRd1amgCioiVsJ0peCgDOuEMWVZNUBq2gjWSQ6lAGYkl2xVM10ZyC95w7kGA6zaRcdz37zx0wQxtYONGvpeOfBTbEtZS0E4_x5yWXMmaYa__gspF7RkPH8i06Mv9MFPweV9W5m78UqSMqOTGengYwzQtWOwgwp_W0ra1zu3nLbznbM9nK0FgA_3XvwHGHik-A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>884663802</pqid></control><display><type>article</type><title>A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network</title><source>IEEE Electronic Library (IEL) Journals</source><creator>Mao, P.L. ; Aggarwal, R.K.</creator><creatorcontrib>Mao, P.L. ; Aggarwal, R.K.</creatorcontrib><description>The wavelet transform is a powerful tool in the analysis of the power transformer transient phenomena because of its ability to extract information from the transient signals simultaneously in both the time and frequency domain. This paper presents a novel technique for accurate discrimination between an internal fault and a magnetizing inrush current in the power transformer by combining wavelet transforms with neural networks. The wavelet transform is firstly applied to decompose the differential current signals of the power transformer into a series of detailed wavelet components. The spectral energies of the wavelet components are calculated and then employed to train a neural network to discriminate an internal fault from the magnetizing inrush current. The simulated results presented clearly show that the proposed technique can accurately discriminate between an internal fault and a magnetizing inrush current in power transformer protection.</description><identifier>ISSN: 0885-8977</identifier><identifier>EISSN: 1937-4208</identifier><identifier>DOI: 10.1109/61.956753</identifier><identifier>CODEN: ITPDE5</identifier><language>eng</language><publisher>New York: IEEE</publisher><subject>Computer simulation ; Faults ; Information analysis ; Inrush current ; Magnetic analysis ; Neural networks ; Power transformers ; Signal analysis ; Spectra ; Surge protection ; Transformers ; Transient analysis ; Wavelet ; Wavelet analysis ; Wavelet domain ; Wavelet transforms</subject><ispartof>IEEE transactions on power delivery, 2001-10, Vol.16 (4), p.654-660</ispartof><rights>Copyright The Institute of Electrical and Electronics Engineers, Inc. (IEEE) 2001</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c434t-1ae307b7df276ead5f7dd2239e041975f86e27e5d8685b45c3dec436966cede53</citedby><cites>FETCH-LOGICAL-c434t-1ae307b7df276ead5f7dd2239e041975f86e27e5d8685b45c3dec436966cede53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://ieeexplore.ieee.org/document/956753$$EHTML$$P50$$Gieee$$H</linktohtml><link.rule.ids>314,780,784,27922,27923,54794</link.rule.ids></links><search><creatorcontrib>Mao, P.L.</creatorcontrib><creatorcontrib>Aggarwal, R.K.</creatorcontrib><title>A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network</title><title>IEEE transactions on power delivery</title><addtitle>TPWRD</addtitle><description>The wavelet transform is a powerful tool in the analysis of the power transformer transient phenomena because of its ability to extract information from the transient signals simultaneously in both the time and frequency domain. This paper presents a novel technique for accurate discrimination between an internal fault and a magnetizing inrush current in the power transformer by combining wavelet transforms with neural networks. The wavelet transform is firstly applied to decompose the differential current signals of the power transformer into a series of detailed wavelet components. The spectral energies of the wavelet components are calculated and then employed to train a neural network to discriminate an internal fault from the magnetizing inrush current. The simulated results presented clearly show that the proposed technique can accurately discriminate between an internal fault and a magnetizing inrush current in power transformer protection.</description><subject>Computer simulation</subject><subject>Faults</subject><subject>Information analysis</subject><subject>Inrush current</subject><subject>Magnetic analysis</subject><subject>Neural networks</subject><subject>Power transformers</subject><subject>Signal analysis</subject><subject>Spectra</subject><subject>Surge protection</subject><subject>Transformers</subject><subject>Transient analysis</subject><subject>Wavelet</subject><subject>Wavelet analysis</subject><subject>Wavelet domain</subject><subject>Wavelet transforms</subject><issn>0885-8977</issn><issn>1937-4208</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2001</creationdate><recordtype>article</recordtype><recordid>eNqF0TtP5DAQAGDrBNItj4KWyqJARxGwk_iREq04QEK6BurIa09YQ2IH22F1v4E_fYYgkCiOaqSZzzMeDUIHlJxSSpozTk8bxgWrfqAFbSpR1CWRW2hBpGSFbIT4iXZifCCE1KQhC_Ryjp1_hh6rcQxe6TVOHqc1YN2rGG1ntUrWO-y7t2wKykULLuFxDc4P4BS2Do9-A2Eudj4MECKeonX3WPthZR0YvFF5CKRPg5Uz2MEUVJ9D2vjwuIe2O9VH2H-Pu-ju98Xt8qq4-XN5vTy_KXRd1amgCioiVsJ0peCgDOuEMWVZNUBq2gjWSQ6lAGYkl2xVM10ZyC95w7kGA6zaRcdz37zx0wQxtYONGvpeOfBTbEtZS0E4_x5yWXMmaYa__gspF7RkPH8i06Mv9MFPweV9W5m78UqSMqOTGengYwzQtWOwgwp_W0ra1zu3nLbznbM9nK0FgA_3XvwHGHik-A</recordid><startdate>20011001</startdate><enddate>20011001</enddate><creator>Mao, P.L.</creator><creator>Aggarwal, R.K.</creator><general>IEEE</general><general>The Institute of Electrical and Electronics Engineers, Inc. (IEEE)</general><scope>RIA</scope><scope>RIE</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SP</scope><scope>7TB</scope><scope>8FD</scope><scope>FR3</scope><scope>KR7</scope><scope>L7M</scope><scope>F28</scope></search><sort><creationdate>20011001</creationdate><title>A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network</title><author>Mao, P.L. ; Aggarwal, R.K.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c434t-1ae307b7df276ead5f7dd2239e041975f86e27e5d8685b45c3dec436966cede53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2001</creationdate><topic>Computer simulation</topic><topic>Faults</topic><topic>Information analysis</topic><topic>Inrush current</topic><topic>Magnetic analysis</topic><topic>Neural networks</topic><topic>Power transformers</topic><topic>Signal analysis</topic><topic>Spectra</topic><topic>Surge protection</topic><topic>Transformers</topic><topic>Transient analysis</topic><topic>Wavelet</topic><topic>Wavelet analysis</topic><topic>Wavelet domain</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mao, P.L.</creatorcontrib><creatorcontrib>Aggarwal, R.K.</creatorcontrib><collection>IEEE All-Society Periodicals Package (ASPP) 1998-Present</collection><collection>IEEE</collection><collection>CrossRef</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><jtitle>IEEE transactions on power delivery</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mao, P.L.</au><au>Aggarwal, R.K.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network</atitle><jtitle>IEEE transactions on power delivery</jtitle><stitle>TPWRD</stitle><date>2001-10-01</date><risdate>2001</risdate><volume>16</volume><issue>4</issue><spage>654</spage><epage>660</epage><pages>654-660</pages><issn>0885-8977</issn><eissn>1937-4208</eissn><coden>ITPDE5</coden><abstract>The wavelet transform is a powerful tool in the analysis of the power transformer transient phenomena because of its ability to extract information from the transient signals simultaneously in both the time and frequency domain. This paper presents a novel technique for accurate discrimination between an internal fault and a magnetizing inrush current in the power transformer by combining wavelet transforms with neural networks. The wavelet transform is firstly applied to decompose the differential current signals of the power transformer into a series of detailed wavelet components. The spectral energies of the wavelet components are calculated and then employed to train a neural network to discriminate an internal fault from the magnetizing inrush current. The simulated results presented clearly show that the proposed technique can accurately discriminate between an internal fault and a magnetizing inrush current in power transformer protection.</abstract><cop>New York</cop><pub>IEEE</pub><doi>10.1109/61.956753</doi><tpages>7</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0885-8977 |
ispartof | IEEE transactions on power delivery, 2001-10, Vol.16 (4), p.654-660 |
issn | 0885-8977 1937-4208 |
language | eng |
recordid | cdi_proquest_miscellaneous_1671256436 |
source | IEEE Electronic Library (IEL) Journals |
subjects | Computer simulation Faults Information analysis Inrush current Magnetic analysis Neural networks Power transformers Signal analysis Spectra Surge protection Transformers Transient analysis Wavelet Wavelet analysis Wavelet domain Wavelet transforms |
title | A novel approach to the classification of the transient phenomena in power transformers using combined wavelet transform and neural network |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-13T16%3A03%3A59IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20novel%20approach%20to%20the%20classification%20of%20the%20transient%20phenomena%20in%20power%20transformers%20using%20combined%20wavelet%20transform%20and%20neural%20network&rft.jtitle=IEEE%20transactions%20on%20power%20delivery&rft.au=Mao,%20P.L.&rft.date=2001-10-01&rft.volume=16&rft.issue=4&rft.spage=654&rft.epage=660&rft.pages=654-660&rft.issn=0885-8977&rft.eissn=1937-4208&rft.coden=ITPDE5&rft_id=info:doi/10.1109/61.956753&rft_dat=%3Cproquest_cross%3E1671256436%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c434t-1ae307b7df276ead5f7dd2239e041975f86e27e5d8685b45c3dec436966cede53%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=884663802&rft_id=info:pmid/&rft_ieee_id=956753&rfr_iscdi=true |