Loading…
Mechanical and thermal properties of polyphenylene sulfide/multiwalled carbon nanotube composites
Polyphenylene sulfide (PPS)/multiwalled carbon nanotube (MWCNT) composites were prepared using a melt‐blending procedure combining twin‐screw extrusion with centrifugal premixing. A homogeneous dispersion of MWCNTs throughout the matrix was revealed by scanning electron microscopy for the nanocompos...
Saved in:
Published in: | Journal of applied polymer science 2012-03, Vol.123 (5), p.2676-2683 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Polyphenylene sulfide (PPS)/multiwalled carbon nanotube (MWCNT) composites were prepared using a melt‐blending procedure combining twin‐screw extrusion with centrifugal premixing. A homogeneous dispersion of MWCNTs throughout the matrix was revealed by scanning electron microscopy for the nanocomposites with MWCNT contents ranging from 0.5 to 8.0 wt %. The mechanical properties of PPS were markedly enhanced by the incorporation of MWCNTs. Halpin‐Tsai equations, modified with an efficiency factor, were used to model the elastic properties of the nanocomposites. The calculated modulus showed good agreement with the experimental data. The presence of the MWCNTs exhibited both promotion and retardation effects on the crystallization of PPS. The competition between these two effects results in an unusual change of the degree of crystallinity with increasing MWCNT content. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012 |
---|---|
ISSN: | 0021-8995 1097-4628 1097-4628 |
DOI: | 10.1002/app.34669 |